DETERMINATION OF RESOURCE QUALITY OBJECTIVES IN THE OLIFANTS WATER MANAGEMENT AREA (WMA4)

WP10536

RESOURCE UNIT PRIORITISATION REPORT

REPORT NUMBER: RDM/WMA04/00/CON/RQO/0213

OCTOBER 2014 FINAL

Department: Water and Sanitation **REPUBLIC OF SOUTH AFRICA** Published by

Department of Water and Sanitation Private Bag X313 Pretoria, 0001 Republic of South Africa

Tel: (012) 336 7500/ +27 12 336 7500 Fax: (012) 336 6731/ +27 12 336 6731

Copyright reserved

No part of this publication may be reproduced in any manner without full acknowledgement of the source.

Department of Water and Sanitation (DWS). 2014. **Determination of Resource Quality Objectives in the Olifants Water Management Area (WMA4): RESOURCE UNIT PRIORITISATION REPORT. Report No.: RDM/WMA04/00/CON/RQO/0213.** Chief Directorate: Water Ecosystems. Study No.: WP10536. Prepared by the Institute of Natural Resources (INR) NPC. INR Technical Report No.: INR 492/14.(iv). Pietermaritzburg, South Africa.

Prepared by:

Institute of Natural Resources NPC PO Box 100396, Scottsville, 3209, South Africa 67 St Patricks Road, Scottsville, Pietermaritzburg, 3201

Determination of Resource Quality Objectives in the Olifants Water Management Area (WMA4) - WP10536		Resource Unit Prioritisation Report
Title:	Resource Unit Prioritisation Report	
Authors:	Dr. Chris Dickens, Dr. Gordon O'Brien, Dr. Nick Rivers-Moore Dr. Ranier Dennis, Ms. Retha Stassen, Mr. Doug Macfarlane, Quale, Mrs. Melissa Wade, Ms. Pearl Mzobe, Ms. Pearl Gola Peter Wade.	e, Mrs. Catherine Pringle, Mr. Regan Rose, Mr. Leo a, Mrs. S Oosthuizen, Dr.
Study Name:	Determination of Resource Quality Objectives in the Olifants (WMA4)	Water Management Area
DWS Report No: Status of Report: First Issue:	RDM/WMA04/00/CON/RQO/0213 Final October 2013	
Final Issue:	October 2014	

Professional Service Providers: Institute of Natural Resources NPC

Approved for the Professional Service Providers by:

Dr Chris Dickens Project Leader Date

DEPARTMENT OF WATER AND SANITATION (DWS)

Directorate: Water Resource Classification

Approved for DWS by:

.....

Date

.....

Ms Ndileka Mohapi Chief Director: Water Ecosystems

DOCUMENT INDEX

Reports as part of this project:

INDEX NO	REPORT NO	REPORT TITLE
		Determination of Resource Quality Objectives in the
01	RDM/WMA04/00/CON/RQO/0112	Olifants Water Management Area (WMA4): INCEPTION
		REPORT
		Determination of Resource Quality Objectives in the
02	RDM/WMA04/00/CON/RQO/0212	Olifants Water Management Area (WMA4): GAP
		ANALYSIS REPORT
		Determination of Resource Quality Objectives in the
03	RDM/WMA04/00/CON/RQO/0113	Olifants Water Management Area (WMA4);
		RESOURCE UNIT DELINEATION REPORT
		Determination of Resource Quality Objectives in the
04	RDM/WMA04/00/CON/RQO/0213	Olifants Water Management Area (WMA4):
		RESOURCE UNIT PRIORITISATION REPORT
		Determination of Resource Quality Objectives in the
05	RDM/WMA04/00/CON/RQO/0114	Olifants Water Management Area (WMA4): SUB-
05		COMPONENT PRIORITISATION AND INDICATOR
		SELECTION REPORT
		Determination of Resource Quality Objectives in the
06		Olifants Water Management Area (WMA4):
00	RDW/WWA04/00/CON/RQ0/0214	RESOURCE QUALITY OBJECTIVES AND
		NUMERICAL LIMITS REPORT
		Determination of Resource Quality Objectives in the
07	RDM/WMA04/00/CON/RQO/0314	Olifants Water Management Area (WMA4): CLOSE
		OUT REPORT

Department of Water and Sanitation

Organisation

MANAGEMENT COMMITTEE

Project Management Committee

Name Surname Adaora Okonkwo Barbara Weston Boitumelo Sejamoholo Chris Dickens Didi Masoabi Ephraim Matseba Gordon O'Brien Jackie Jay Jurgo van Wyk Lebo Mosoa Lee Boyd Mahadi Mofokeng Malise Noe Mbali Dlamini Mfundi Biyela Motau Sepadi Nadine Slabbert Nancy Motebe Ndileka Mohapi Patiswa Mngokoyi Pearl Gola Priva Moodley Sadimo Manamela Seef Rademeyer Shane Naidoo Sindiswa Sonjica Stanford Macevele Steven Shibambu Sydney Nkuna Tendani Nditwani Tendavi Mkombe Tovhowani Nyamande **Trevor Coleman** Vusumzi Mema Yakeen Atwaru

Department of Water and Sanitation Department of Water and Sanitation Institute of Natural Resources **Golder Associates** Department of Water and Sanitation Institute of Natural Resources Department of Water and Sanitation Department of Water and Sanitation Department of Water and Sanitation Golder Associates Department of Water and Sanitation Zitholele Consulting Institute of Natural Resources Golder Associates Department of Water and Sanitation Department of Water and Sanitation

Department of Water and Sanitation Department of Water and Sanitation Department of Water and Sanitation Department of Water and Sanitation Department of Water and Sanitation Golder Associates

Department of Water and Sanitation Department of Water and Sanitation

Project Team

Name Surname

Catherine Pringle Chris Dickens Douglas Macfarlane Gordon O'Brien Leo Quale Melissa Wade Nick Rivers-Moore Pearl Gola Pearl Mzobe Peter Wade Ranier Dennis Regan Rose Retha Stassen Sian Oosthuizen

Organisation

Institute of Natural Resources (NPC) Institute of Natural Resources (NPC) Eco-Pulse Institute of Natural Resources (NPC) Institute of Natural Resources (NPC) Jeffares and Green (Pty) Ltd Institute of Natural Resources (NPC) Institute of Natural Resources (NPC) Institute of Natural Resources (NPC) Consulting North West University Geowater IQ (Pty) Ltd Consulting Institute of Natural Resources (NPC)

Component

Water Resource Classification **Reserve Requirements Resource Directed Measures Compliance Project Team** Middle Vaal RQOs Study Team Gauteng Regional Office Project Team Water Resource Planning Systems Water Resource Planning Systems Water Resource Planning Systems Middle Vaal RQOs Study Team Northern Cape Regional Office Resource Protection and Waste Mpumalanga Regional Office Free State Regional Office Limpopo Regional Office **Resource Quality Services Reserve Requirements** Water Ecosystems Middle Vaal RQOs Study Team Project Team Middle Vaal RQOs Study Team **Resource Directed Measures Compliance** National Water Resources Planning Water Resource Classification Free State Regional Office Mpumalanga Regional Office Limpopo Regional Office Mpumalanga Regional Office National Water Resources Planning National Water Resources Planning Water Resource Classification Middle Vaal RQOs Study Team Resource Directed Measures Compliance **Reserve Requirements**

Role

Specialist Scientist, RQO Determination Project Leader and Specialist Scientist Specialist Scientist: Wetlands Project Manager and Specialist Scientist Scientist: RQO Determination Scientist: RQO Determination Project Manager and Specialist Scientist Scientist: RQO Determination Scientist: RQO Determination Scientist: RQO Determination Specialist Scientist: Water Quality Specialist Scientist: Groundwater Specialist Scientist: Groundwater Specialist Scientist: Hydrology Scientist: RQO Determination

Determination of Resource Quality Objectives in the Olifants Water Management Area (WMA4) - WP10536

Resource Unit Prioritisation Report

Executive Summary

The Resource Quality Objectives (RQOs) determination procedures for the Olifants Water Management Area (WMA) involved the application of the seven step framework established by the Department of Water Affairs in 2011 (DWA, 2011). Although the procedures involve defining the resource, setting a vision, determination of RQOs and Numerical Limits (NLs), gazetting this and then moving to implementation, monitoring and review before starting the process all over again, some of these steps were achieved in the Water Resource Classification (WRC) Study and not repeated in this study. The procedural steps established for this case study to determine RQOs for rivers, groundwater, dams and wetland resources in the WMA include:

- Step 1. Delineate the Integrated Units of Analyses (IUAs) and Resource Units (RUs).
- Step 2. Establish a vision for the catchment and key elements for the IUAs.
- Step 3. Prioritise and select RUs and ecosystems for RQO determination.
- Step 4. Prioritise sub-components for RQO determination, select indicators for monitoring and propose the direction of change.
- Step 5. Develop draft RQOs and NLs.
- Step 6. Agree Resource Units, RQOs and Numerical Limits with stakeholders.
- Step 7. Finalise and Gazette RQOs.

Components of steps 1 and 2 were available from the WRC study to which this RQO determination process was aligned. This report documents the prioritisation and selection of RUs and ecosystems for RQO determination in the Olifants WMA (Step 3).

The prioritisation process resulted in the selection of the number of resources as indicated in Table 1, for each IUA, for which sub-components and indicators would be selected in Step 4:

IUA	Rivers	Wetlands	Dams	Groundwater
Total	29	30	23	
IUA1	4	11	3	
IUA2	2	7	2	
IUA3	1	1	2	
IUA4	1	1	2	
IUA5	4	0	2	
IUA6	5	7	5	30
IUA7	1	0	0	50
IUA8	1	0	2	
IUA9	2	2	1	
IUA10	4	0	1	
IUA11	2	0	1	
IUA12	2	0	2	
IUA13	1	1	0	

Table 1: Summary of results of the prioritisation process for the Olifants WMA

Determination of Resource Quality Objectives in the Olifants Water Management Area (WMA4) - WP10536

Resource Unit Prioritisation Report

TABLE OF CONTENTS

1	INT	ΓR	ODUCTION	1
2	SC	:0	PE OF THE STUDY	2
3	ME	ΞŦŀ	HODOLOGY	3
	3.1		Resource Quality Objectives methodology overview	3
	3.2		Resource Unit prioritisation overview and gaps	5
	3.3		Stakeholder workshops	6
	3.4		Step 3: River Resource Unit Prioritisation for the Olifants WMA	6
	3.4	1.1	Application of the Resource Unit Prioritisation Tool	6
	3.4	.2	Scoring of criteria and sub-criteria in the RUPT	6
	3.4	.3	Evaluation of the relative ranking and weighting of each criterion and sub-criterion	6
	3.4	1.4	Selection of preliminary Resource Units for RQO determination	7
	3.4	.5	Presentation and revision of RUPT and prioritised Resource Units with stakeholders	7
	3.4	.6	Amendment of desktop scores with stakeholders	9
	3.4	1.7	Adjustment of relative rankings and weightings of criteria and sub-criteria with stakeholders 1	0
	3.4	.8	Selection of final priority Resource Units1	0
	3.5		Wetland ecosystem prioritisation for the Olifants WMA1	1
	3.6		Methodology used for desktop prioritization	2
	3.6	6.1	Development of a consolidated wetland map1	2
	3.6	6.2	Consolidation and formatting of data to inform wetland prioritization	2
	3.6	6.3	Position of resource unit within the IUA	3
	3.6	6.4	Concern for users	3
	3.6	6.5	Importance to users (Current & anticipated future)1	3
	3.6	6.6	Threat posed to users1	5
	3.6	6.7	Assessment of the importance of each Resource Unit to ecological components1	6
	3.6	6.8	Environmental concern10	6
	3.6	6.9	Level of threat posed to water resource quality for the environment	7
	3.6	6.1	0 Identifying Resource Units for which management action should be prioritised	8
			ν	ii

	3.6.11	Assessing practical considerations associated with RQO determination for each Resource	e Unit18
	3.6.12	Evaluating the relative ranking and weighting of each criterion	18
	3.6.13	Undertaking a formal GIS analysis to develop prioritisation layers	19
	3.6.14	IUA-level verification and selection of candidate wetlands for RQO determination	20
	3.7 Sta	akeholder engagement and selection of priority wetlands	20
	3.7.1	Identification of potential candidate wetlands through stakeholder engagement	20
	3.7.2	Final selection of priority sites	21
	3.8 Da	ams ecosystem prioritisation for the Olifants WMA	22
	3.9 Gr	oundwater Resource Unit and ecosystem prioritisation for the Olifants WMA	22
	3.9.1	Importance for Users	23
	3.9.2	Threat Posed to Users	29
	3.9.3	Ecological Importance	35
	3.9.4	Management Considerations	
4	FINDING	GS	42
	4.1 Pr	iority River Resource Units for the Olifants WMA	42
	4.2 Pr	iority wetland ecosystems for the Olifants WMA	43
	4.2.1	Extent of mapped wetlands in the Olifants catchment	43
	4.2.2	Results of the desktop prioritisation exercise	44
	4.2.3	Wetlands initially identified by key stakeholders	48
	4.2.4	Wetlands selected for RQO determination	49
	4.3 Pr	iority dam ecosystems for the Olifants WMA	73
	4.4 Pr	iority groundwater Resource Units and ecosystems for the Olifants WMA	75
	4.5 St	akeholders comment management	77
	4.5.1	The purpose of the workshop	77
	4.5.2	The participation level	77
	4.5.3	The availability of information	77
	4.5.4	The timing or scheduling of activities within the workshop	77
	4.5.5	The facilitation of the workshop	78
5	LIMITAT	IONS AND UNCERTAINTIES	79
	Some of the ecosystem	ne key limitations which may influence the confidence of the outcomes of the Resource prioritisation process which should be considered when implementing these priority	Unit and RUs and
	ecosystem	s include:	79

	5.1	Rivers
	5.2	Wetlands
	5.3	Dams79
	5.4	Groundwater
6	WAY	FORWARD
7	ACKI	NOWLEDGEMENTS
8	REFE	ERENCES
9	APPE	ENDICES
	9.1 Tool for	Appendix A: Summary of the Data Used to Score the Desktop Application of the RU Prioritisation Rivers in the Study
	9.2 RUPT fe	Appendix A2: RU scores for each criterion and sub-criterion applied in the desktop application of the or rivers in the study
	9.3 PRIORI	APPENDIX A3: MOTIVATION FOR CHANGES TO SCORES FROM DESKTOP RU TISATION TOOL WHICH RESULTED IN THE AMENDED PRIORITISATION TOOL
	9.4 WITHIN	APPENDIX B. GIS METADATA INCLUDING SCORES APPLIED TO SELECTED ATTRIBUTES I EACH OF THE GIS DATASETS USED TO INFORM THE PRIORITISATION PROCESS
	9.5 process	APPENDIX C: List of primary spatial (GIS) information used to inform the wetland prioritisation for the Olifants catchment
	9.6 determi	APPENDIX D. Criteria and associated weightings used in prioritizing wetlands for RQO nation. Initial GIS datasets are shaded in grey
	9.7	Appendix E – PLOTTING PROCEDURE FOR EXPANDED DUROV DIAGRAM
	9.8	APPENDIX F: WORKSHOP EVALUATION QUESTIONNAIRE

LIST OF TABLES

Table 1: Summary of results of the prioritisation process for the Olifants WMAvi
Table 2: Initial and adjusted ranks and weights for the Ecological Importance sub-criteria in the RUPT7
Table 3: Resource Units and associated prioritisation scores generated through desktop application of the
RUPT and evaluated with stakeholders. A high score represent the most important RU. Three scenarios were
considered including maintaining original weighting scores (Scenario 1), reducing management and position
variables weights by 50% (Scenario 2) and removing weight of management and position variables (Scenario
3). Top 30 Resource Units highlighted
Table 4: Overview of amendments by stakeholders to each criterion and sub-criterion9
Table 5: Additional RUs selected by stakeholders and the associated rationale for their selection
Table 6: List of key stakeholders contacted and summary of feedback obtained. 20
Table 7: Groundwater prioritisation criteria 22
Table 8: Water character rating guideline 25
Table 9: Aquifer yield class
Table 10: Major aquifer rating guideline 26
Table 11: Contribution to economy rating guideline
Table 12: Relative aquifer stress rating guideline 30
Table 13: Water quality that is threatened rating guideline 32
Table 14: DRASTIC Parameters
Table 15: Aquifer vulnerability rating guideline 34
Table 16: Groundwater importance to wetlands rating guideline 37
Table 17: Surface-groundwater interaction rating guideline
Table 18: Important groundwater fauna rating guideline
Table 19: Contribution to economy rating guideline
Table 20: Priority River Resource Units selected for the Olifants WMA
Table 21: Motivation for selected wetlands in IUA1. 52
Table 22: Motivation for selected wetlands in IUA2. 55
Table 23: Motivation for the selection of wetlands in IUA3 Error! Bookmark not defined.
Table 24: Motivation for selecting wetlands in IUA4. 59
Table 25: Motivation for selecting wetlands in IUA6 Error! Bookmark not defined.
Table 26: Motivation for wetlands selected in IUA9. 67
Table 27: Motivation for the wetland selected in IUA13. 72
Table 28: Final selected priority dams for the Olifants WMA 73
Table 29: Comments on workshop process by workshop participants who attended the Olifants RQO
prioritisation workshop from 29 – 31 July 2013

LIST OF FIGURES

Figure 1: Schematic summary of the RQO determination procedure (adapted from DWA, 2011) which y	was
implemented in this study.	5
Figure 2: Structured hierarchy used to inform the prioritisation process.	19
Figure 3: Class assignment of expanded Durov diagram	24
Figure 4: Expanded Durov diagram with evaluation of EC	24
Figure 5: Spatial distribution of water character rating	25
Figure 6: Major aquifer classification map	26
Figure 7: Spatial distribution of major aquifers rating	27
Figure 8: Activities that contribute to the economy	28
Figure 9: Spatial distribution of contribution to the economy rating	29
Figure 10: Relative aquifer stress	30
Figure 11: Spatial distribution of relative aquifer stress rating	31
Figure 12: Groundwater quality distribution map	32
Figure 13: Spatial distribution of threat to water quality rating	33
Figure 14: DRASTIC aquifer vulnerability	34
Figure 15: Spatial distribution of aquifer vulnerability rating	35
Figure 16: Wetlands directly affected by groundwater in the study area	36
Figure 17: Spatial distribution of wetlands directly affected by groundwater rating	37
Figure 18: Surface-groundwater interaction	38
Figure 19: Spatial distribution of surface-groundwater interaction rating	39
Figure 20: Current mining positions assumed to have management plans	40
Figure 21: Spatial distribution of management plans rating	41
Figure 22: River Resource Units prioritised for the Olifants WMA	43
Figure 23: Distribution of mapped wetlands in the Olifants catchment	44
Figure 24: Rating of wetlands based in their location along main stem rivers and potential for integra	iting
impacts associated with the upstream IUA	45
Figure 25: Prioritisation of wetlands based on concern for users in the Olifants catchment	46
Figure 26: Map indicating the ratings of wetlands based on environmental criteria.	47
Figure 27: Wetland rating based on practical considerations (reflecting available data sources)	48
Figure 28: Priority wetlands identified by local stakeholders	49
Figure 29: Map indicating the distribution and location of wetlands prioritized for RQO determination in	the
Olifants catchment	50
Figure 30: Wetland types and consolidated PES data for IUA 1	50
Figure 31: Map showing the location of prioritised wetlands for RQO determination in IUA1.	52
Figure 32: Wetland types and consolidated PES data for IUA 2	53
Figure 33: Map showing the location of prioritised wetlands for RQO determination in IUA2.	55
Figure 34: Wetland types and consolidated PES data for IUA 3	56
Figure 35: Map showing the location of prioritised wetlands for RQO determination in IUA3.	57
Figure 36: Wetland types and consolidated PES data for IUA 4	58
Figure 37: Map showing the location of the single wetland prioritised for RQO determination in IUA4	59

Determination of Resource Quality Objectives in the Olifants Water Management Area	Resource Unit
(WMA4) - WP10536	Prioritisation Report

Figure 38:	Wetland types and consolidated PES data for IUA 5	60
Figure 39:	Wetland types and consolidated PES data for IUA 6	61
Figure 40:	Map showing the location of wetlands prioritized for RQO determination in IUA6.	62
Figure 41:	Wetland types and consolidated PES data for IUA 7	63
Figure 42:	Wetland types and consolidated PES data for IUA 8	64
Figure 43:	Wetland types and consolidated PES data for IUA 9	65
Figure 44:	Map showing the location of prioritised wetlands for RQO determination in IUA9.	67
Figure 45:	Wetland types and consolidated PES data for IUA 10	68
Figure 46:	Wetland types and consolidated PES data for IUA 11	69
Figure 47:	Wetland types and consolidated PES data for IUA 12	70
Figure 48:	Wetland types and consolidated PES data for IUA 13	71
Figure 49:	Map showing the location of the wetland selected for RQO determination in IUA13.	72
Figure 50:	Prioritised dam ecosystems selected for the Resource Quality Objectives determination st	łudy
through the	e Resource Unit Prioritisation process	74
Figure 51:	Olifants groundwater RU prioritization outcomes	75
Figure 52:	Top 30 groundwater resource units selected for the determination of Ground Water Resource Qua	ality
Objectives	in the study.	76

ABBREVIATIONS

Acronym	Meaning
AI	Aluminium
As	Arsenic
CaCO ₃	Calcium Carbonate
Cd	Cadmium
Chl-a	Chlorophyll a
CI	Chlorine
Cr(VI)	Hexavalent chromium
Cu	Copper
DOC	Dissolved organic carbon
DRM	Desktop Reserve Model
DWA	Department of Water Affairs
DWAF	Department of Water Affairs and Forestry
DWS	Department of Water and Sanitation
EIS	Ecological Importance and Sensitivity
EWR	Ecological Water Requirements
F	Fluorine
FEPA	Freshwater Ecosystem Priority Areas
FRAI	Fish Response Assessment Index
GIS	Geographical Information Science
Hg	Mercury
Og/l	Micrograms per litre
IBA	Important Bird Areas
IRHI	Index of Reservoir Habitat Impairment
IUA	Integrated Unit of Analysis
IWRM	Integrated Water Resource Management
IWRMP	Integrated Water Resources Management Plan
KNP	Kruger National Park
m³/s	Cubic meters per meter (cumecs)
MAR	Mean Annual Runoff
MC	Management Class
mg/l	Milligrams per litre
MIRAI	Macroinvertebrate Response Assessment Index
Mn	Manganese
NFEPA	National Freshwater Ecosystem Priority Areas
NL	Numerical Limit
NO ₂	Nitrite
NO ₃	Nitrate
NTU	Turbidity
NWA	National Water Act
NWRS	National Water Resource Strategy
0 ₂	Oxygen
Pb	Lead

PES	Present Ecological State
рН	power of hydrogen
PO ₄	Phosphate
RDM	Resource Directed Measures
REC	Recommended Ecological Category
REC	Recommended ecological category
RHAM	Rapid Habitat Assessment Method
RHP	River Health Programme
RO	Regional Office
RQOs	Resource Quality Objectives
RR	Reporting rates
RU / RUs	Resource Unit/s
RUET	Resource Unit Evaluation Tool
RUPT	Resource Unit Prioritisation Tool
SASS5	South African Scoring System version 5
Se	Selenium
SPI	Specific Pollution sensitivity Index
TDS	Total Dissolved Solids
TIN	Total Inorganic Nitrogen
TPC	Threshold of Probable Concern
VEGRAI	Vegetation Response Assessment Index
VMAR	Virgin Mean Annual Runoff
WE	Water Ecosystems
WMA	Water Management Area
WRC	Water Resource Classification
WWTW	Waste Water Treatment Works
Zn	Zinc

DEFINITION OF PROJECT SPECIFIC ACRONYMS:

- EWR Ecological Water Requirements is synonymous with the ecological component of the Reserve as defined in the Water Act (1998).
- IUA Integrated Unit of Analysis or spatial units that will be defined as significant resources (as prescribed by the NWA). They are finer-scale units aligned to watershed boundaries, in which socio-economic activities are likely to be similar.
- MC The Management Class is set by the WRC and describes the degree of alteration that resources may be subjected to.
- REC Recommended Ecological Category this is a recommendation purely from the ecological perspective designed to meet a possible future state.
- RU Resource Unit is a stretch of river that is sufficiently ecologically distinct to warrant its own specification of Ecological Water Requirements
- WRC Water Resources Classification is a procedure required by the Water Act 1998 that produces a MC per IUA for all water resources.

Determination of Resource Quality Objectives in the Olifants Water Management Area (WMA4) - WP10536

Resource Unit Prioritisation Report

1 INTRODUCTION

The rationale for requiring RQOs, their components, their applicability and implementation procedures emanate from the National Water Act of South Africa (NWA, 1998). The Water Act (1998) requires that all water resources are protected in order to secure their future and sustainable use. It lays out a plan where each significant water resources (surface water, wetlands, groundwater and estuaries) are classified according to a WRC System. In the process, the Reserve is also determined for the water resource, i.e. the amount of water, and the quality of water, that is required to sustain both the ecosystem and provide for basic human needs. This Reserve then contributes to the Classification of the resource. This classification results in a Management Class and associated RQOs for water resources, which then gives direction for future management activities in the WMA. According to the Water Act (NWA, 1998), the purpose of RQOs are to establish clear goals relating to the quality of the relevant water resources and stipulates that in determining RQOs a balance must be sought between the need to protect and sustain water resources, is the RQOs that are produced. These are numerical and narrative descriptors of conditions that need to be met in order to achieve the required management scenario as provided during the resource classification. Such descriptors relate to the:

- (a) quantity, pattern, timing, water level and assurance of instream flow
- (b) water quality including the physical, chemical, and biological characteristics of the water
- (c) character and condition of the instream and riparian habitat; and
- (d) characteristics, condition and distribution of the aquatic biota (DWA, 2011).

This section of the RQO determination procedure includes the prioritisation and selection of RUs and ecosystems RQO determination in the Olifants WMA (Step 3; DWA, 2011). The Water Resource Classification System proposes that RQOs are set for each RU. In reality however, this may not be practical as there may be a large number of RUs within a selected catchment. A rationalisation process is necessary to prioritise and select the most useful RUs for RQO determination. The objective of Step 3 is therefore to prioritise and select preliminary RUs which will then be discussed and agreed with stakeholders during Step 6.

2 SCOPE OF THE STUDY

The study entails the determination of Resource Quality Objectives (RQOs) for all significant water resources (rivers, wetlands, dams (or lakes) and groundwater ecosystems) in the Olifants Water Management Area (WMA). The RQO determination procedure established by DWA (2011) has been implemented to determine RQOs in this case study. The RQO determination procedure is based on a seven step framework including (DWA, 2011; Figure 1):

- Step 1. Delineate the Integrated Units of Analysis (IUAs) and define the Resource Units.
- Step 2. Establish a vision for the catchment and key elements for the IUAs.
- Step 3. Prioritise and select preliminary Resource Units for RQO determination.
- Step 4. Prioritise sub-components for RQO determination, select indicators for monitoring and propose the direction of change.
- Step 5. Develop draft RQOs and Numerical Limits (NLs).
- Step 6. Agree RUs, RQOs and NLs with stakeholders.
- Step 7. Finalise and Gazette RQOs.

In 2013 the Department of Water Affairs completed the Water Resource Classification (WRC) study for the Olifants WMA which included the delineation IUAs and established a vision for the catchment and key elements for the IUAs (DWA, 2013). This resulted in the determination of Management Classes for each IUA and Recommended Ecological Categories for biophysical nodes selected to represent the riverine ecosystem in the WMA. These outcomes met the IUA delineation requirements for the study and provided the vision information, including Management Classes for the study. As such this study did not duplicate these components but rather adopted the outcomes from the WRC study (DWA, 2013). Apart from these components that were obtained from the WRC study, some developments/adaptations were made to the DWA (2011) RQO determination procedure to the groundwater, wetland and dam components of the study in particular. This report documents the approach adopted and the outcomes of the implementation of Step 3 of the RQO determination procedure (DWA, 2011).

3 METHODOLOGY

3.1 RESOURCE QUALITY OBJECTIVES METHODOLOGY OVERVIEW

The Resource Quality Objectives determination procedures established by DWA (2011) were implemented in this study. This included the implementation of the seven-step procedural framework which is repeatable and as such allows for an adaptive management cycle with additional steps (Figure 1). Overall the procedure involved defining the resource, setting a vision, determining RQOs and Numerical Limits (NLs), gazetting the RQOs and NLs and then moving to implementation, monitoring and review of these RQOs and NLs before starting the process all over again. A summary of the procedural steps established for this case study, with some adaptations that were required to include groundwater, dams and wetland resources include:

- Step 1. Delineate the IUAs and RUs: In this case study IUAs were obtained from the Water Resource Classification (WRC) study (DWA, 2012) and applied to all water resources considered in the study (rivers, wetlands, dams and groundwater ecosystems). Three spatial levels for resources were considered for RQO determination in this case study:
 - Regional (IUA) scale assessments were considered for rivers, wetlands and groundwater resources in the study.
 - Resource Unit scale assessments that were aligned to biophysical nodes obtained from the WRC study (DWA, 2012) were considered for river and groundwater resources alone.
 - Ecosystem scale assessments were considered for wetland and dam ecosystems/resources in the study.

The RU delineation procedure initially involved the identification of sub-quaternary reaches of rivers in the WMA for each biophysical node obtained from the WRC study. The RU delineation process then involved amalgamating the upstream associated sub-quaternary reaches of riverine ecosystems, and their associated catchment areas. As a result, the number of RUs selected for the study was identical to and could later be aligned to the information associated with the biophysical nodes from the WRC study. The delineation procedure for ecosystem scale resource assessment involved the use of Geographical Information System (GIS) spatial ecosystem data.

- Step 2. Establish a vision for the catchment and key elements for the IUAs: The stakeholder requirements and their associated outcomes, which include the Management Classes for IUAs and RECs for RUs from the WRC study, were adopted as the vision for this study (DWA, 2012). No further visioning process was appropriate as this could have conflicted with the WRC process. The WRC outcomes were skewed towards river resources in the WMA which necessitated obtaining additional information for the other resources considered in the study (i.e. wetlands, dams and groundwater ecosystems). This additional information is highlighted in the applicable reports.
- Step 3. Prioritise and select RUs and ecosystems for RQO determination: This step involved the use of existing ecological specifications (EcoSpecs) and user specifications (UserSpecs) information from the Olifants Reserve and WRC studies. This information was used to implement the RU Prioritisation Tool for rivers (DWA, 2011) and the new RU Prioritisation Tools developed for groundwater RUs as part of this study. Wetland ecosystem prioritisation involved the implementation of a new GIS based prioritisation approach developed for the study and dam ecosystem prioritisation was based on a desktop assessment of available user- and eco-spec information. During this step, RU and ecosystem prioritisation stakeholder participation workshops were carried out during which available information was discussed and amended according to available local information regarding the protection and use requirements for the WMA. During these RU and ecosystem prioritisation stakeholder workshops, consensus was reached to select the final lists of prioritised RUs and ecosystems for the RQO determination process.
- Step 4. Prioritise sub-components for RQO determination, select indicators for monitoring and propose the direction of change: This step included the hosting of a range of specialist workshops for rivers, dams, wetlands and groundwater resources where RU Evaluation Tools were used to select subcomponents for RQO determination, select indicators and propose the direction of change. The RU Evaluation Tools used for wetlands, dams and groundwater were developed for the study. This information was then used to develop draft RQOs and Numerical Limits in the next step. The relevant activities of this step were:

- 4.1 Identify and assess the impact of current and anticipated future use on water resource components
- 4.2 Identify requirements of important user groups
- 4.3 Selection of sub-components for RQO determination
- 4.4 Establish the desired direction of change for selected sub-components
- 4.5 Complete the information sheet for the Resource Unit Evaluation Tool
- Step 5. Develop draft RQOs and Numerical Limits: This step was based on the outcomes of the RU and ecosystem prioritisation step (Step 4). From the outcomes of the RU and ecosystem prioritisation step, draft RQOs were established and provided to recognised specialists to establish NLs that were generally quantitative descriptors of the different components of the resource (such as the water quantity, quality, habitat and biota). These descriptors were designed to give a quantitative measures of the RQOs (DWA, 2011). Although the NLs may have had some uncertainty associated with them and were not originally intended for gazetting (DWA, 2011), they were considered for gazetting in the study at the request of the Department of Water and Sanitation (DWS) Chief Directorate: Legal Services. Refer to the RQO and NL reports for more information. The relevant activities of this step were:
 - 5.1 Carry over sub-component and indicator information from the Resource Unit Evaluation Tool
 - 5.2 Extract available data to determine the present state for selected sub-components and indicators
 - 5.3 Assess the suitability of the data
 - 5.4 Where necessary, collect data to determine the Present State for selected indicators
 - 5.5 Determine the level at which to set RQOs
 - 5.6 Set appropriate draft RQOs
 - 5.7 Set appropriate draft Numerical Limits in line with the draft RQO
 - 5.8 Determine confidence in the RQOs and process
- Step 6. Agree on Resource Units, RQOs and Numerical Limits with stakeholders: This component included the consideration of RQO and NL outcomes with stakeholders prior to the initiation of the gazetting process. The relevant activities of this step were:
 - 6.1 Notify stakeholders and plan the workshop
 - 6.2 Present and refine the Resource Unit selection with stakeholders
 - 6.3 Present the sub-components and indicators selected for the RQO determination
 - 6.4 Present the proposed direction of change and associated rationale
 - 6.5 Present and revise RQOs and Numerical Limits
- Step 7. Finalise and Gazette RQOs: This component of the RQO determination process is still to be carried out. A Legal Notice was developed as a part of this study for submission to Chief Directorate: Legal Services of the DWS for gazetting.

Figure 1: Schematic summary of the RQO determination procedure (adapted from DWA, 2011) which was implemented in this study.

3.2 RESOURCE UNIT PRIORITISATION OVERVIEW AND GAPS

The Water Resource Classification System proposes that RQOs are set for each RU. In reality however, this is not practical as there are a large number of RUs within the WMA and it would be excessively expensive to set

RQOs and to monitor all of them. A rationalisation process is therefore necessary to prioritise and select the most useful RUs for RQO determination. The objective of Step 3 was therefore to prioritise and select preliminary RUs which were discussed and agreed with stakeholders. Different approaches were used to prioritise the river, wetland, groundwater and dam resources within the Olifants WMA. Each of these respective approaches is discussed below.

3.3 STAKEHOLDER WORKSHOPS

For this component of the study a resource unit prioritisation workshop for the Olifants Water Management Area was carried out at the Loskop Dam Nature Reserve from 29-31 July 2013. The workshop was well attended by local community representatives and representatives from the agriculture, industry, mining sectors, regional and national conservation authorities, local and regional water resource managers and scientists. The following tasks were assessed with stakeholders at the workshop:

- Evaluation of the study area, resource units (RU), desktop RU prioritisation results.
- Evaluation of the data used for the desktop RIVER RU prioritisation.
- Evaluation of the data used for the desktop GROUND WATER RU prioritisation.
- Evaluation of the data used for the desktop Lakes and Wetlands RU prioritisation.
- Evaluation of amended RU prioritisation results.
- Selection of RUs for RQO determination of the Olifants WMA RQO study.

3.4 STEP 3: RIVER RESOURCE UNIT PRIORITISATION FOR THE OLIFANTS WMA

3.4.1 APPLICATION OF THE RESOURCE UNIT PRIORITISATION TOOL

The RQO methodology provides a decision support tool, the Resource Unit Prioritisation Tool (RUPT), to guide the selection process (DWA, 2011). This tool was used to determining the relative importance of monitoring each RU in the Olifants WMA as part of management operations. All of the RUs are ranked in order, from highly important to not important.

3.4.2 SCORING OF CRITERIA AND SUB-CRITERIA IN THE RUPT

The RUPT assesses a range of criteria and sub-criteria including the following:

- Position of the Resource Unit within the IUA
- Importance of each Resource Unit to users and level of threat posed to water resource quality for users
- Importance of each RU to ecological components and level of threat posed to water resource quality for the environment
- · Resource Units for which management action should be prioritised
- Practical considerations associated with RQO determination for each RU

The information used to evaluate each of these criteria was gathered from a range of sources including the Water Resource Classification, StatsSA Census 2011, the Reconciliation Study for the Olifants, and the PES-EIS study. The method of data processing and scoring of each of criterion and sub-criterion is detailed in Appendix A1. The actual scores assigned to each RU for each sub-criterion are detailed in Appendix A2.

3.4.3 EVALUATION OF THE RELATIVE RANKING AND WEIGHTING OF EACH CRITERION AND SUB-CRITERION

The RUPT assigns standard ranks and relative weights to each criterion and sub-criterion. These ranks and relative weights remained unchanged for all criteria and sub-criteria with the exception of the Ecological Importance sub-criteria. The ranks and weights of these sub-criteria were adjusted as the data included in the provincial biodiversity aquatic plans incorporated the NFEPA data which had already been assessed as a separate sub-criterion. The initial and adjusted ranks and weights for each of these sub-criteria are detailed in Table 2.

Table 2: Initial and adjusted ranks and weights for the Ecological Importance sub-criteria in the RUPT
--

Criterion	Sub-criteria	Initial rank	Initial weight	Altered rank	Altered weight
	Resource units with a high or very high EIS category	3	80	3	80
Ecological importance	Resource units which have an A/B NEC and / or PES	2	90	2	90
	Resource units identified as National Freshwater Ecosystem Priority Areas	1	100	1	100
	Resource units identified as a priority in provincial / fine scale aquatic biodiversity plans	1	100	4	70

3.4.4 SELECTION OF PRELIMINARY RESOURCE UNITS FOR RQO DETERMINATION

The RUPT provides summary prioritisation scores for each RU. These integrated scores are calculated on the weighted individual scores applied to each RU. The prioritisation scores for each RU based on the desktop application of the RUPT are provided in Table 3. These scores provide an indication of which RUs should be selected for RQO determination.

3.4.5 PRESENTATION AND REVISION OF RUPT AND PRIORITISED RESOURCE UNITS WITH STAKEHOLDERS

The populated RUPT and associated prioritised RUs were presented to stakeholders at a workshop on 29-31 July 2013. This provided an opportunity for stakeholders to interrogate the scores, ranks and weights for each of the criteria and sub-criteria.

Determination of Resource Quality Objectives in the Olifants Water Management Area	Resource Unit
(WMA4) - WP10536	Prioritisation Report

Table 3: Resource Units and associated prioritisation scores generated through desktop application of the RUPT and evaluated with stakeholders. A high score represent the most important RU. Three scenarios were considered including maintaining original weighting scores (Scenario 1), reducing management and position variables weights by 50% (Scenario 2) and removing weight of management and position variables (Scenario 3). Top 30 Resource Units highlighted.

RU	Scenario 1	Rank	Scenario 2	Rank	Scenario 3	Rank	RU	Scenario 1	Rank	Scenario 2	Rank	Scenario 3	Rank	RU	Scenario 1	Rank	Scenario 2	Rank	Scenario 3	Rank
1	0.47	19	0.59	25	0.61	35	42	0.12	116	0.21	112	0.24	112	83	0.44	26	0.70	6	0.79	5
2	0.33	52	0.54	39	0.61	32	43	0.21	83	0.37	64	0.43	62	84	0.35	46	0.56	32	0.63	29
3	0.46	20	0.58	27	0.61	36	44	0.19	90	0.34	75	0.39	71	85	0.36	42	0.57	30	0.64	25
4	0.34	50	0.56	34	0.63	27	45	0.22	76	0.33	81	0.36	79	86	0.49	17	0.41	60	0.40	67
5	0.33	51	0.54	38	0.61	31	46	0.55	10	0.36	71	0.30	95	87	0.19	89	0.30	92	0.34	87
6	0.45	22	0.58	28	0.61	37	47	0.37	41	0.44	55	0.44	58	88	0.27	64	0.42	57	0.46	53
7	0.44	24	0.56	33	0.58	41	48	0.27	65	0.47	50	0.54	47	89	0.27	63	0.48	48	0.56	45
8	0.36	43	0.56	31	0.63	28	49	0.45	21	0.72	5	0.81	3	90	0.13	113	0.17	120	0.18	120
9	0.42	30	0.68	8	0.77	8	50	0.34	49	0.54	40	0.60	40	91	0.20	88	0.35	74	0.40	68
10	0.32	57	0.51	45	0.58	43	51	0.12	115	0.21	113	0.24	113	92	0.23	74	0.35	73	0.39	75
11	0.52	12	0.68	10	0.71	11	52	0.42	29	0.68	7	0.77	7	93	0.30	60	0.44	54	0.49	51
12	0.50	15	0.63	15	0.66	20	53	0.63	7	0.47	51	0.42	65	94	0.11	118	0.18	117	0.21	117
13	0.69	3	0.76	3	0.81	2	54	0.40	34	0.63	17	0.71	15	95	0.56	9	0.75	4	0.80	4
14	0.25	66	0.40	61	0.46	56	55	0.33	54	0.49	47	0.55	46	96	0.39	35	0.43	56	0.43	59
15	0.28	62	0.41	59	0.46	55	56	0.41	32	0.64	14	0.73	10	97	0.53	11	0.47	49	0.48	52
16	0.47	18	0.59	24	0.61	34	57	0.43	28	0.67	13	0.76	9	98	0.64	6	0.68	11	0.71	12
17	0.35	48	0.54	37	0.61	38	58	0.19	91	0.34	76	0.39	72	99	0.21	81	0.32	86	0.35	84
18	0.23	75	0.33	80	0.36	78	59	0.21	82	0.30	93	0.33	90	100	0.23	73	0.35	72	0.39	74
19	0.28	61	0.41	58	0.46	54	60	0.19	94	0.32	87	0.36	81	101	0.17	103	0.24	106	0.26	107
20	0.44	25	0.34	78	0.33	88	61	0.15	106	0.26	101	0.30	98	102	0.18	96	0.34	79	0.39	76
21	0.32	56	0.51	44	0.58	42	62	0.40	33	0.63	16	0.71	14	103	0.51	13	0.67	12	0.71	13
22	0.33	53	0.53	41	0.61	39	63	0.35	45	0.55	36	0.61	30	104	0.70	2	0.68	9	0.68	17
23	0.36	44	0.59	23	0.67	19	64	0.38	37	0.59	21	0.66	21	105	0.37	39	0.61	20	0.68	18
24	0.38	36	0.62	18	0.69	16	65	0.49	16	0.61	19	0.63	26	106	0.22	78	0.32	84	0.36	83
25	0.22	79	0.30	91	0.33	89	66	0.80	1	0.77	2	0.77	6	107	0.18	98	0.34	77	0.39	73
26	0.35	47	0.58	26	0.66	23	67	0.32	55	0.36	68	0.37	77	108	0.10	121	0.16	121	0.18	121
27	0.38	38	0.59	22	0.66	22	68	0.30	59	0.28	97	0.25	110	109	0.20	86	0.37	66	0.43	64
28	0.16	104	0.24	108	0.26	108	69	0.14	110	0.24	105	0.28	103	110	0.20	85	0.37	65	0.43	63
29	0.13	112	0.23	109	0.27	105	70	0.14	109	0.24	104	0.28	102	111	0.12	114	0.23	110	0.27	106
30	0.20	84	0.30	94	0.33	91	71	0.24	70	0.38	63	0.43	60	112	0.15	107	0.28	96	0.33	92
31	0.43	27	0.31	88	0.29	99	72	0.65	5	0.53	43	0.49	50	113	0.25	69	0.45	52	0.51	48
32	0.16	105	0.27	99	0.31	94	73	0.19	93	0.26	102	0.28	101	114	0.41	31	0.50	46	0.51	49
33	0.31	58	0.53	42	0.61	33	74	0.18	97	0.26	100	0.29	100	115	0.17	102	0.30	90	0.35	85
34	0.22	80	0.32	83	0.36	82	75	0.10	120	0.19	116	0.22	116	116	0.68	4	0.78	1	0.84	1
35	0.23	72	0.36	70	0.39	70	76	0.17	100	0.23	111	0.24	111	117	0.22	77	0.33	82	0.36	80
36	0.11	117	0.21	114	0.24	114	77	0.25	68	0.37	67	0.41	66	118	0.17	99	0.25	103	0.27	104
37	0.18	95	0.29	95	0.32	93	78	0.10	119	0.19	115	0.22	115	119	0.23	71	0.36	69	0.39	69
38	0.37	40	0.57	29	0.64	24	79	0.14	111	0.18	119	0.19	119	120	0.25	67	0.38	62	0.43	61
39	0.19	92	0.31	89	0.34	86	80	0.14	108	0.18	118	0.19	118	121	0.58	8	0.55	35	0.57	44
40	0.51	14	0.44	53	0.44	57	81	0.17	101	0.24	107	0.26	109							
41	0.20	87	0.28	98	0.30	97	82	0.45	23	0.32	85	0.30	96							

3.4.6 AMENDMENT OF DESKTOP SCORES WITH STAKEHOLDERS

The scores for each criterion were mapped and presented in a graphical format for discussion. Each score was interrogated and where necessary amended. The amended criteria are detailed in Table 4 and the actual change in each score and the associated justification is included in Appendix A3.

Criterion	Sub-criterion	Proposed amendments by stakeholders
Position of resource unit within IUA		Scores for two RUs were adjusted.
	Resource units which provide important cultural services to society	A number of scores were adjusted based on local knowledge.
	Resource units which are important in supporting livelihoods of significant vulnerable communities	A number of scores were adjusted based on local knowledge.
Importance for users (Current & anticipated	Resource units which are important in meeting strategic requirements and international obligations	Numerous scores were adjusted as stakeholders indicated that strategic water is sourced from the Komati and Vaal which are not located within the WMA.
future use)	Resource units that provide supporting and regulating services	A number of scores were adjusted based on local knowledge.
	Resource units most important in supporting activities contributing to the economy (GDP & job creation) in the catchment (e.g. commercial agriculture, industrial abstractions and bulk abstractions by water authorities)	A number of scores were adjusted based on local knowledge.
Threat posed to users	Level of threat posed to users	A number of scores were adjusted based on local knowledge.
	Resource units with a high or very high EIS category	Scores for three RUs were adjusted based on local knowledge.
	Resource units which have an A/B NEC and / or PES	Scores for two RUs were increased based on local knowledge.
Ecological Importance	Resource units identified as National Freshwater Ecosystem Priority Areas	These scores were not altered during the stakeholder workshop.
	Resource units identified as a priority in provincial / fine scale aquatic biodiversity plans	During the stakeholder engagement workshop, local knowledge facilitated the identification of additional areas that were being protected. This new data was incorporated into the amended RU Prioritisation Tool.
Threat faced by ecological component of the RU	Level of threat posed to ecological components of the resource unit	These scores were not altered during the stakeholder workshop.
Management Considerations	Resource units with PES lower than a D Category or lower than the accepted	The scores for some RUs were increased based on information from the PES-EIS

Criterion	Sub-criterion	Proposed amendments by stakeholders
	gazetted category (NEC)	study.
Practical	Availability of EWR site data or other monitoring data (RHP, DWAF gauging weirs etc) located within reach?	These scores were not altered during the stakeholder workshop.
Considerations	Accessibility of resource unit for monitoring	These scores were not altered during the stakeholder workshop.
	Safety risk associated with monitoring resource units.	These scores were not altered during the stakeholder workshop.

3.4.7 ADJUSTMENT OF RELATIVE RANKINGS AND WEIGHTINGS OF CRITERIA AND SUB-CRITERIA WITH STAKEHOLDERS

Workshop participants also evaluated the relative ranks and weights allocated to each of the criteria and subcriteria. In order to emphasise the importance of the ecological and user requirements, the weightings and rankings of the other criteria were interrogated. Consequently, stakeholders requested the preparation of the following three scenarios:

- Scenario 1: Use standardised rankings and weightings proposed in the RQO prioritisation process for all criteria and sub-criteria
- Scenario 2: Reduce the relative weighting by 10% for the following criteria:
 - Position of the RU in the IUA
 - Practical considerations
 - Management considerations
- Scenario 3: Reduce the relative weighting to 0 for the following criteria:
 - o Position of the RU in the IUA
 - o Practical considerations
 - Management considerations

The outputs of these scenarios were discussed at the workshop and informed the selection of final priority RUs.

3.4.8 SELECTION OF FINAL PRIORITY RESOURCE UNITS

After considering all three scenarios, stakeholders felt that Scenario 3 provided the most appropriate RUs for RQO selection. A final priority map was produced where RUs with high scores were initially prioritised on a catchment scale. Thereafter additional RUs for IUAs that did not contain any priority RUs were identified and added to the priority list. Stakeholders then reviewed this list and replaced some of the proposed priority RUs with other RUs which they felt were more important. The rationale for the selection of these RUs by stakeholders is provided in Table 5. A total of 29 RUs were prioritised for the Olifants WMA (Table 20).

RU	Rationale for selection by stakeholders
31	This RU is located at the base of the Wilge River Catchment in the Olifants River WMA (IUA 2), and was selected by Stakeholders to ensure that all use of the river ecosystems in IUA 2 could be regulated through RQOs selected for this RU.
40	This RU is located downstream of the Loskop Dam and was selected by stakeholders to allow dame releases from the dam to be regulated through RQOs selected for this RU.
46	This RU is located at the base of IUA 4 and represents the only RU selected to allow ecosystem use to be regulated in this IUA. Consensus was reached amongst stakeholders that this RU be selected for the establishment of RQOs.

RU	Rationale for selection by stakeholders
53	This RU is located on the Olifants River mainstem and was selected by stakeholders to establish RQOs at the base of IUA 5. The RQOs established for this RU will ensure that upstream land use in IUA 5 will be regulated. In addition this RU was selected to have RQOs established that would contribute to the regulation of the Flag Boshielo Dam.
72	This RU is also located on the mainstem Olifants River in IUA 7. This RU was selected for RQO determination by stakeholders based on local knowledge of threats to the state of the instream channel and the importance of establishing RQOs for the Olifants River.
82	This RU was selected by stakeholders due its strategic location being positioned at the base of the Spekboom catchment (IUA 8). This RU was selected to ensure that river ecosystem use in this IUA can be regulated and that these RQOs will contribute to achieving RQOs in the highly utilised IUA 6 downstream of this RU.
86	This RU was selected by stakeholders due its strategic location being positioned at the base of the Ohrigstad catchment (IUA 9). This RU was selected to ensure that river ecosystem use in this IUA can be regulated to maintain sensitive Ecospecs in the IUA.
97	This RU was prioritised by stakeholders based on local knowledge of threats to the state of the instream channel and the importance of establishing RQOs for the Makhutswi River, a tributary of the Olifants River so that impacts in this RU are regulated and minimised upstream of the Olifants River.
105	The selection of this RU on the Olifants River, below the confluence of the Makhutswi River (RU97), for prioritisation was based on the importance of regulating the Makhutswi, Moungwane and Malomanye rivers (RU97) in relation to the upper Olifants (RU98) and minimising impacts to the lower Olifants River.
121	This RU was selected by stakeholders due its strategic location being positioned at the base of the Blyde catchment (IUA 13). This RU was selected to ensure that river ecosystem use in this IUA can be regulated to maintain sensitive EcoSpecs in the IUA.

3.5 WETLAND ECOSYSTEM PRIORITISATION FOR THE OLIFANTS WMA

Step 3 of the RQO Process involves the prioritisation and selection of preliminary resource units for RQO determination. This step recognises that a rationalisation process may be necessary to prioritise and select the most useful Resource Units for RQO determination. This is particularly relevant for wetland resources which include thousands of wetlands distributed across the Olifants catchment. The objective of Step 3 was therefore to prioritise and select preliminary Resource Units which will then be discussed and agreed with stakeholders during Step 6.

An excel-based decision support tool was previously developed to guide this selection process of priority wetlands identified during the water resource classification process (DWA, 2011). While this tool provides a useful framework for selecting a sub-set of prioritized wetlands, priority wetland resource units were not identified as part of the classification process undertaken for the Olifants catchment. As such, an alternative approach to wetland prioritisation needed to be developed that considered all wetlands within the Olifants catchment.

Selection of wetland ecosystems is important as monitoring of these wetlands over the long-terms is intended to provide an indication as to how well wetlands in the catchment are being managed and how they are responding to water resource management at both a catchment and IUA level. A two-pronged approach was used to help prioritize wetland ecosystems for RQO determination in the Olifants catchment. This included (i) a desktop based prioritisation process aimed at flagging priorities based on available spatial datasets and (ii)

engagement with key stakeholders to identify potential priority sites based on local knowledge of the study area. The final set of wetlands selected was then reviewed and finalised with stakeholders as part of Step 6 of the RQO process.

A note on selecting individual wetlands for RQO determination

While prioritizing individual wetland ecosystems for RQO determination is regarded as useful, it is important to note that wetlands are highly variable systems and are not linearly connected in the same manner that rivers are. As such monitoring of a sub-set of wetlands is likely to provide very little information on how other wetlands within the catchment are responding to site and catchment-level activities. As such, a decision was taken to also set regional-scale RQOs which are designed to provide general resource quality objectives for all wetlands in the Olifants catchment. This also allows for monitoring to be undertaken at a broader level which can be used to obtain a more holistic picture of wetland management than can be achieved from the information collected for a small sub-set of prioritized wetland ecosystems. The approach and process followed in setting regional-scale RQOs is outlined in the RQO sub-component and subsequent reports.

3.6 METHODOLOGY USED FOR DESKTOP PRIORITIZATION

An alternative approach was developed to prioritize wetlands at a desktop level for RQO determination in the Olifants catchment.

This involved the following broad tasks:

- Developing a consolidated wetland map for the catchment;
- Consolidation and formatting of datasets to inform wetland prioritization;
- Developing a structured hierarchy and assigning weightings to input datasets;
- Undertaking a formal GIS analysis to integrate information into consolidated desktop wetland prioritisation layers.

Further details of the individual tasks associated with this prioritisation exercise are summarised in this section of the report while details of input datasets are provided in Appendix B and C.

3.6.1 DEVELOPMENT OF A CONSOLIDATED WETLAND MAP

The NFEPA wetland coverage was used as the primary basis for delineating wetlands in the catchment. This was however replaced by more accurate information in the Upper Olifants where more detailed wetland coverage had been prepared by Exigent (2006). Further details regarding the delineation of wetland ecosystems are provided in the RU delineation report.

3.6.2 CONSOLIDATION AND FORMATTING OF DATA TO INFORM WETLAND PRIORITIZATION

Prior to undertaking the prioritisation process, it was important to collate available spatial datasets for wetlands in the focus area. The selection of datasets was informed largely by the prioritisation criteria identified in the resource unit prioritisation tool (DWAF, 2011). Scores (ratings) were then applied to each dataset by considering the relative importance of features identified. In order to prevent scoring biases, these scores ranged from 0-1 with scores of 1 indicating features with the highest importance. A summary of the datasets used in the prioritisation process are described below while details of the scores applied for each of the input coverages is captured in Appendix C.

3.6.3 POSITION OF RESOURCE UNIT WITHIN THE IUA

Resource Units on large mainstem rivers at the downstream end of the IUAs are located at the edge of socioeconomic zones where user requirements are likely to differ. Such Resource Units also aggregate the upstream impacts from the entire IUA and can therefore be a useful gauge of the success of upstream management activities. In the case of wetlands, large river-linked wetlands (valley bottoms & floodplains) may therefore be useful candidates for selection. A GIS coverage was therefore created by selecting and rating the relative usefulness of wetlands along mainstem rivers within the Olifants catchment.

3.6.4 CONCERN FOR USERS

The importance of wetlands from a user perspective is based on the joint-consideration of the importance of wetlands in supporting user requirements and the threat posed to such resources. The rationale is therefore that those wetland that are highly important and under threat should be targeted for RQO determination above other wetland units. Details of the criteria used to assess these criteria are detailed below.

3.6.5 IMPORTANCE TO USERS (CURRENT & ANTICIPATED FUTURE)

This assessment was designed to consider both current and anticipated future use. A number of sub-criteria relevant to different user considerations were included in the assessment and are detailed below.

Resource Units which provide cultural services

Cultural services are less tangible than material services but nonetheless may be highly valued by society. Relevant benefits may include recreational use, tourism or scientific benefits, and aesthetic, cultural or spiritual values. Resource Units which provide these benefits should be protected as they contribute to the wellbeing of society. User groups for which this service is likely to be particularly important include subsistence users, recreation and tourism and real estate and property owners/developers. In the case of the Olifants catchment, the following datasets were used to obtain an indication of the potential importance of wetlands in providing cultural services:

- **Important Bird Areas**: The purpose of the IBA Programme is to identify and protect a network of sites, at a biogeographical scale, critical for the long-term viability of naturally-occurring bird populations. Such sites are targeted for research and birding activities.
- **Ramsar sites**: Ramsar sites have been identified based on unique site attributes that emphasise their conservation value at both a National and International level.
- Formally Protected Areas: Formal conservation areas are also typically the focus of tourism, research and education activities. Wetlands within these areas are therefore likely to contribute towards these cultural values.

Note that wetlands that are likely to be important from a cultural perspective for subsistence users were not specifically identified. Such wetlands are however likely to be linked with vulnerable communities and would therefore be covered by that criteria.

Resource Units which support the livelihoods of significant vulnerable communities

Many poor communities are directly reliant on wetlands for domestic water use, food, grazing, medicine, and building materials. Poor communities are particularly vulnerable to wetland degradation as these changes affect their livelihoods directly. The level of vulnerability determines the degree of impact caused by changes in the level of service provision. Resource units which support significant vulnerable communities should therefore be prioritised. The following datasets were used to identify and rank regions in terms of the likely reliance of communities on wetland resources:

Statistics South Africa Census Data: Poorer communities are likely to be more reliant on natural
resources that more affluent communities. Income levels therefore provide a useful indicator of areas in
which reliance on natural resources (including those available from wetlands) is likely to be higher.
Population density is also a useful indicator, with higher levels of reliance anticipated in areas with
higher population densities. Dwelling type also provides useful information and can be used to
differentiate between rural communities (e.g. living in huts) and more formal housing which would
suggest more affluent communities.

• **Climatic conditions:** Reliance of communities on water provision from water resources (including wetlands) is likely to be particularly high in situations where rainfall variability is high and where there are prolonged periods of no rainfall. The number of months without rainfall (available at a quaternary catchment level) therefore provides another useful indicator of potential community reliance on wetland resources.

Resource Units used for strategic requirements or international obligations

Resource Units which are used for strategic purposes or are important in meeting international obligations should be prioritised to ensure that obligations are met. International obligations are linked to river flows in this case, with no specific focus on wetlands¹. As such, this criterion was excluded from the prioritisation process.

Resource Units which provide supporting and regulating services

Regulating and supporting services provided by wetlands include flood attenuation, stream flow regulation, sediment trapping, erosion control, water quality enhancement and carbon storage. Assessing the relative importance of wetlands in providing these services is not easily achieved at a desktop level and is influenced by the ability of the wetland to supply these services (determined by wetland attributes) and the demand for these services (determined by catchment context and surrounding land use). An attempt has been made to rate the potential importance of wetlands in providing a sub-set of these regulating and supporting services using available GIS datasets as outlined below:

Flood attenuation

- Supply of flood attenuation service: Wetland type provides a broad surrogate for the ability of different wetlands to provide a flood attenuation function. Ranking of types was informed by WET-Ecoservices (Kotze *et. al.*, 2009).
- Demand for flood attenuation service: This is influenced by a range of factors including:
 - Catchment slope: The greater the average slope of the catchment, the higher the likelihood of increased runoff, particularly after heavy storm events.
 - Runoff potential: The higher the runoff potential of soils in the catchment, the greater the likelihood of elevated flows after heavy rains.
 - Dams in catchment: Dams typically help to attenuate floods. Wetlands within catchments characterised by high dam densities are therefore likely to be less important in providing this service than wetlands located in catchments with low dam densities.
 - Land use: Land use can also have a significant impact on storm flows by altering infiltration capacities and increasing natural runoff levels. Catchments with high levels of urban infrastructure and transformation are therefore more likely to be characterised by elevated flood peaks.
 - Rainfall intensity: Catchments characterised by intense rainfall events are likely to exhibit more flashy flows with higher incidences of flooding.

This information had been summarised for the Olifants catchment at a quaternary catchment level as part of the Wet-Win Project (IWMI, 2011) and was used to inform this assessment.

Sediment trapping and erosion control

- Supply of sediment trapping & erosion control services: Wetland type provides a broad surrogate for the ability of different wetlands to provide a sediment trapping & erosion control function. Ranking of types was informed by WET-Ecoservices (Kotze *et. al.*, 2009).
- Demand for sediment trapping & erosion control services: This is influenced by a range of factors including:
 - Dams in catchment: Dams typically capture sediment from their receiving catchments this reducing sediment loads in downstream water resources. Wetlands within catchments characterised by high dam densities are therefore likely to be less important in providing this service than wetlands located in catchments with low dam densities.

¹ Note: The importance of Ramsar sites is recognised but is addressed under ecological aspects.

- Sediment sources: The demand for this service is likely to be higher in catchments characterised by high sediment sources in the catchment.
- Land use and erodibility: Catchments characterised by land uses that are typically characterised by high levels of erosion are likely to contribute towards high sediment loads in water resources. Wetlands in these catchments are therefore likely to be more important in providing this service.

This information had been summarised for the Olifants catchment at a quaternary catchment level as part of the Wet-Win Project (IWMI, 2011) and was used to inform this assessment.

Water quality enhancement:

- Supply of water quality enhancement service: Wetland type provides a broad surrogate for the ability of different wetlands to provide a water quality enhancement function. Ranking of types was informed by WET-Ecoservices (Kotze *et. al.*, 2009).
- Demand for water quality enhancement services: This is influenced by the water quality entering wetland resources. A range of surrogates can be used to obtain an indication of water quality impacts including:
 - Non-point source agriculture and irrigation: Water resources within catchments characterised by high levels of agricultural activities are likely to be subject to higher levels of diffuse pollution than wetlands within catchments with low levels of agricultural use.
 - Mining activities: Mining activities are known to have a range of negative impacts on water quality. Catchments characterised by a high proportion of mines are therefore likely to have greater water quality problems than those with low levels of mining activity.
 - Population density: This provides a surrogate for pressure on the environment and potential negative impacts on water quality. Water resources in catchments characterised by high population densities are therefore likely to be more impacted than those located in less populated landscapes.

This information had been summarised for the Olifants catchment at a quaternary catchment level as part of the Wet-Win Project (IWMI, 2011) and was used to inform this assessment.

Levels of Physico-Chemical impacts on water resources have also been subjectively assessed at a subquaternary catchment scale as part of the desktop PES/EIS assessment (Kleynhans, 2013). This provides another useful indicator of potential water quality impacts.

Resource Units which support activities which contribute to the economy

This criterion was not regarded as an important variable for wetlands in this case study and was excluded from the prioritisation process.

3.6.6 THREAT POSED TO USERS

This assessment should consider the risk of the water resource to users in each resource unit. Resource units which are threatened or are likely to be threatened by current or planned future activities (e.g. mines, towns, industries, dams, intensive agriculture) should be monitored.

Threats have effectively been determined at a quaternary catchment level through the Wet-Win project (IWMI, 2011) which used available data to assess the potential impact of catchment-related activities on wetland condition. Aspects considered as part of this assessment included:

- Hydrological threats which considered potential impacts associated with dams and withdrawals for irrigation, bulk, rural and urban use;
- Geomorphological threats including potential reductions in sediment input from dams and increased sediment inputs associated with various land uses;
- Modifications to wetland vegetation as a result of land uses in the catchment;
- The PES of rivers in the quaternary catchment; and
- The population density as a surrogate for potential water quality impacts.

These threats were integrated into a single score representing the anticipated levels of impact to wetlands within each quaternary catchment (Scores ranged from 0 (no impact) to 10 (maximum impact)).

The PES/EIS project (Kleynhans, 2013) also provides ratings for a suite of criteria that provides an indication of current pressures on aquatic resources. The most relevant from a wetland perspective which were used to inform the prioritisation process include:

- Riparian Wetland Zone Modification;
- Potential Flow Modification; and
- Potential Physico-Chemical modifying activities.

These threat scores were integrated to provide another surrogate measure of threats facing wetland ecosystems. Scores from this and the Wet-Win datasets were then integrated to provide an indication of pressures facing wetlands across the study area.

3.6.7 ASSESSMENT OF THE IMPORTANCE OF EACH RESOURCE UNIT TO ECOLOGICAL COMPONENTS

As with anthropogenic users, there are a range of attributes that affect the importance of setting RQOs for different Resource Units. In order to help highlight Resource Units that are important from an ecological perspective, four sub-criteria were proposed in the RQO manual:

- Ecological Importance and Sensitivity (EIS) Categories
- Present Ecological State (PES) and Recommended Ecological Category (REC)
- National Freshwater Ecosystem Priority Areas; and
- Priority habitats / species identified in provincial conservation plans.

Available datasets were reviewed and used to develop a suite of GIS coverages indicating the importance of wetlands from an ecological perspective. The approach and rationale followed is briefly described here.

3.6.8 ENVIRONMENTAL CONCERN

The importance of wetlands from a conservation perspective is based on the joint-consideration of the ecological importance and sensitivity of wetlands and the threat posed to such resources. The rationale is therefore that those wetland that are highly important and under threat should be targeted for RQO determination above other wetland units. Details of the criteria used to assess these criteria are detailed below,

Ecological importance and sensitivity

Resource Units with high or very high Ecological Importance and Sensitivity Category require special attention to prevent deterioration of these resource units. These areas are considered vital for protecting important or sensitive species and maintaining aquatic biodiversity.

An assessment of the ecological importance and sensitivity of wetlands within the Olifants catchment was informed by a range of available datasets. This included:

- **Protection status of the wetland**: Wetlands falling within protected areas (including Ramsar sites) contribute towards the long-term protection of ecosystems and species.
- Threat status of the wetland vegetation group: Threat status of wetland vegetation groups have been determined as part of the National Freshwater Ecosystem Priority Areas (NFEPA) project. The threat status of the wetland vegetation group is based on levels of transformation and protection of wetland ecosystems with similar characteristics. Wetlands occurring within a threatened wetland group are regarded as having a greater ecological importance than those occurring within wetland vegetation groups of lower threat status.
- Importance associated with wetlands in the catchment: The importance of threatened taxa was assessed by experts for river reaches at a desktop level as part of the desktop PES/EIS assessment (DWA, 2013). This provides another level of information on ecological importance that was integrated into this assessment.

- **Sensitivity to changes in floods**: Floodplains are regarded as most sensitive, followed by valley bottoms, seeps and pans. This was therefore evaluating by linking sensitivity to wetland type information.
- Sensitivity to changes in low flows / dry season: Unchannelled valley bottom wetlands are regarded as most sensitive, followed by seeps and other wetland types. This was therefore evaluating by linking sensitivity to wetland type information.

Intolerance to water level / flow changes: Vertebrate taxon (excluding fish) and vegetation that are sensitive / intolerant to water level changes were assessed at a desktop level as part of the desktop PES/EIS process (DWA, 2012). Relevant attributes were therefore extracted from this dataset to inform this assessment.

Resource Units which have an A/B NEC and /or PES

Resource Units with an A/B PES or an agreed A/B NEC (in the case where Water Resource Classification has been undertaken) need to be carefully managed to prevent deterioration of these reaches. This is particularly relevant given the poor state of South Africa's rivers and the need to protect aquatic biodiversity. PES was based on information available in the Wetland FEPA coverage and that provided in the Exigent dataset.

Resource Units which have been identified as a National Freshwater Ecosystem Priority Area

Resource Units identified as National Freshwater Ecosystem Priority Areas have been identified using spatial modelling and expert review. Such areas are regarded as priorities for protection and monitoring from an ecological perspective. A range of datasets were used and include:

- Wetland FEPA datasets: A range of important data is available in this coverage which was used to select priority wetlands for protection. This includes data on important wetlands in Mpumalanga; wetlands prioritised by experts for their biodiversity importance and wetlands occurring in proximity to a range of recorded threatened species. For the purposes of this assessment, two attributes are regarded as most important:
 - Rank: Wetlands were ranked (1=most important to 6=least important) in terms of their importance. This provides a useful basis for comparing the relative importance of wetlands in contributing towards biodiversity objectives.
 - **WETFEPA**: Here, priority wetlands have been selected to meet national wetland conservation targets.
- Wetland clusters: Wetland clusters are groups of wetlands within 1 km of each other and embedded in a relatively natural landscape. This allows for important ecological processes such as migration of frogs and insects between wetlands.
- **FEPA Catchments:** FEPAs support the biodiversity sector's input into the development of Catchment Management Strategies and into the Water Resource Classification process². This database including FEPAs, RehabFEPAs, Fish Support Areas and Upstream management areas therefore highlights catchments where water resource management (including wetland management) is important to meet biodiversity targets.

<u>Resource Units which have been identified as a priority in provincial aquatic systematic conservation</u> <u>plans</u>

NFEPA datasets are regarded as providing an adequate representation of priority areas identified through a systematic conservation planning approach. Provincial-level aquatic conservation plans were therefore not used as part of this prioritisation exercise.

3.6.9 LEVEL OF THREAT POSED TO WATER RESOURCE QUALITY FOR THE ENVIRONMENT

Resource units which are threatened or are likely to be threatened by current or planned future upstream activities (e.g. mines, towns, industries, dams, intensive agriculture) should be monitored due to the potential risk posed to ecological elements of the water resource. Threats to wetland resources have already been assessed (See Section 2.2.2) and were used again here.

² Note that the FEPA datasets have effectively replaced the previous Aquatic Conservation Plan previously used to identify conservation priorities in Mpumulanga (Mervyn Lotter, Pers. comm..)

3.6.10 IDENTIFYING RESOURCE UNITS FOR WHICH MANAGEMENT ACTION SHOULD BE PRIORITISED

In the case of rivers, priority is given to river reaches where the PES is lower than a D category which needs to be improved. This is not regarded as a critical requirement for prioritizing wetland resources. By contrast, monitoring should probably rather focus on remaining intact systems.

3.6.11 ASSESSING PRACTICAL CONSIDERATIONS ASSOCIATED WITH RQO DETERMINATION FOR EACH RESOURCE UNIT

Apart from the criteria already considered, there are additional practical considerations which are worth considering during the Resource Unit prioritisation process. These include the availability of data to inform RQO determination and practical constraints associated with accessibility and security risks. In the case of wetlands, the availability of data is a key consideration. Unfortunately much wetland information resides with mining companies and consultants and there was not sufficient time to try and consolidate such information. Sites that have been prioritised and worked on by Working for Wetlands do typically have baseline wetland data and therefore could act as useful sites. Wetlands associated with WFWetlands activities were therefore highlighted together with those associated with DWA monitoring and EWR sites.

3.6.12 EVALUATING THE RELATIVE RANKING AND WEIGHTING OF EACH CRITERION

Once available datasets were collated, the ranking and relative weighting of various criteria and sub-criteria were re-evaluated. Decision Analyst (Queensland Government Department of Natural Resources and Mines, 2005) was used to assist in ranking the various input criteria. This was done by first developing a simple structured hierarchy reflecting the relationships between various variables (Figure 1). AHP Pairwise analysis was then used to make pair-wise comparisons of the all elements in the same level of the hierarchy which allowed input criteria to be objectively rated against one another based on the perceived accuracy and relevance of the various input datasets. The resultant scores were used to assign weightings to the various input layers as detailed in Appendix E of this report.

Figure 2: Structured hierarchy used to inform the prioritisation process.

3.6.13 UNDERTAKING A FORMAL GIS ANALYSIS TO DEVELOP PRIORITISATION LAYERS

The purpose of this sub-step was to flag priority wetland ecosystems which should be considered for RQO determination. A Geographic Information System was used to intersect the various datasets and to calculate scores for each level of the hierarchy. The scores for users and the environment integrate both the importance for users/environment and the threats to users/environment in order to calculate an overall 'concern score' for each Resource Unit. These 'concern scores' help to highlight those Resource Units that are important and subject to a high level of threat by anthropogenic activities and which are therefore likely to be a priority for users or the environment. The resultant maps were used to inform the selection of potential wetland systems for RQO determination.

Deviations from the RQO methodology

Whilst undertaking a GIS-based analysis is somewhat different to that advocated in the RQO guidelines, the thinking and process of screening sites using important criteria remains the same. It is important to note however that whilst the initial Resource Unit Prioritisation Tool was developed to integrate the scores for criteria at level 2 of the hierarchy (IUA position; User Concerns; Environmental Concerns; Management Constraints & Practical Considerations), a decision was made to not combine scores from these datasets into a final prioritisation score for this project. The rationale here was that by weighting these layers, the weighted score did not adequately reflect the high priority that should be given to wetlands rated as being of high concern from a user *or* environmental perspective. Following discussions from stakeholders, it was also agreed that while management and practical considerations are worth considering, these aspects should not directly affect site selection. The position of wetlands within the IUA was also regarded as being of low importance and as such, these three elements were effectively de-coupled from the prioritisation process.

3.6.14 IUA-LEVEL VERIFICATION AND SELECTION OF CANDIDATE WETLANDS FOR RQO DETERMINATION.

The RQO procedures document (DWA, 2011) strongly recommended that at least one Resource Unit be selected within each IUA to ensure that management requirements within each of these units are adequately considered. A systematic approach was therefore followed to verify the potential usefulness of prioritized wetlands within each IUA. This was done by zooming in to wetlands that had been prioritized from either a user or environmental perspective and displaying these together with available contour data, river features and aerial photography. In many instances, this revealed that wetland features were not present and represented riparian areas while in other instances, the extent of wetlands was poorly indicated. It was also evident that the distribution of wetlands was highly variable across the catchment with the extent of wetlands being extremely limited in some IUAs. As a result, a higher number of candidate wetlands were typically identified in IUAs with higher wetland densities while no suitable candidate sites could be identified in some of the IUAs.

3.7 STAKEHOLDER ENGAGEMENT AND SELECTION OF PRIORITY WETLANDS

3.7.1 IDENTIFICATION OF POTENTIAL CANDIDATE WETLANDS THROUGH STAKEHOLDER ENGAGEMENT

In order to try and supplement the desktop approach to prioritization, a range of key stakeholders within the catchment were contacted to help identify further candidate wetlands for RQO determination based on (i) outstanding biodiversity value and / or (ii) functional importance. A list of these stakeholders, together with brief notes on the inputs obtained is captured in Table 6, below.

Stakeholder	Organization	Input provided
Ursula Franke	Endangered Wildlife Trust	Highlighted the Lakenvlei wetland and Verloren
		Valei Nature Reserve wetland as priorities for
		cranes and White-winged Flufftails.
Lientjie Cohen	MTPA	Did not provide any specific data. Suggested a
		number of contacts to follow up with further.
Marisa Coetzee	Association for Water and Rural	Did not provide any specific information.
	Development (AWARD)): Project	
	Coordinator of the Resilience in	
	the Limpopo River Basin program	
	(RESILIM-Olifants)	

Stakeholder	Organization	Input provided	
Charmaine Uys	Birdlife South Africa	Highlighted the importance of a number of	
		wetlands for bird conservation and provided	
		contact details for other key stakeholders.	
Frank Webb	BotSoc (Lowveld)	Did not identify any priority wetlands but flagged	
		the Eastern MP Highveld as an important area	
		from a botanical perspective.	
Anton Linström	Wet-earth eco-specs	Identified 12 potential candidate wetlands	
		based on his experience in working in the area.	
Craig Whittington-	GDARD	Provided documentation regarding the	
Jones		importance of a number of wetlands for grass-	
		owl conservation.	
Peter Ardurne	FOSAF / Steenkampsberg	No feedback obtained.	
	Environmental Initiative		
Mattheuns Pretorius	Endangered Wildlife Trust	Highlighted the importance of the Elandsvlei	
		pan systems for Grass-Owls and provide	
		supporting documentation.	
Professor Ray Jansen	Tshwane University of	He indicated that he was not familiar with the	
	Technology	Olifants catchment and would not be able to	
		contribute substantially to this project.	
lan Little	Endangered Wildlife Trust	No feedback obtained.	
Frans Krige	MTPA and Dullstroom Wildflower	Emphasised the importance of Lakenvlei	
	Club		
Gary Marneweck	Wetland Consulting Services	Identified a range of priority wetlands in	
		consultation with his consulting team.	
Hannes Marais	МТРА	Did not identify any priority sites but suggested	
		that Brian Morris be contacted for further	
		information.	
Mervyn Lotter	МТРА	Indicated that priority wetlands had been	
		identified as part of the NFEPA project. No	
		additional spatial data was available.	
Piet-Louis Grundling	Ixhaphozi Enviro Services CC	No feedback obtained.	
.	(I.E.S)		
Brian Morris	Enviroleq	No feedback obtained.	
Allan Abel	Witwatersrand orchid Society	No feedback obtained.	
Andre Beetge	Working for Wetlands and head of	Assisted in providing information on wetlands	
	Mpumalanga Wetland Forum	systems where WFWetlands had undertaken	
		work in the past.	
Graham Alexander	WITS University	Indicated that the catchment was not	
		particularly important for amphibians. No	
		priority sites were identified.	

3.7.2 FINAL SELECTION OF PRIORITY SITES

Once potential candidate wetlands had been identified through these two different approaches, a stakeholder workshop was arranged to finalise the list of priority sites and to continue with the sub-component and indicator selection process. This was held on 27th and 28th November 2013 and was attended by the following stakeholders:

- Wietsche Roets (DWA);
- Valerie Killian (DWA);
- Namisha Muthraparsad (DWA);
- Anton Linström (Wet-earth eco-specs);

- Gary Marneweck (Wetland Consulting Services);
- Douglas Macfarlane (Eco-Pulse Environmental Consulting Services).

This process was supported by a broad-scale assessment of the current status and importance of wetlands in providing ecosystem goods and services and involved systematically evaluating candidate wetlands in each IUA and then selecting the most appropriate sub-set for RQO determination³. The extent of each of these wetland ecosystems were then mapped as a final output of the prioritisation process.

3.8 DAMS ECOSYSTEM PRIORITISATION FOR THE OLIFANTS WMA

Step 4 of the RQO determination procedure uses the information that was gathered during the previous steps, especially step 3 to determine those priority areas or resource units where RQOs should be determined for the protection of the resource quality. The purpose of the development of RQOs for dams is to ensure adequate releases from the priority dams to provide the quantity and quality of water required for the protection of the aquatic ecosystems downstream of the dams.

The dams that were identified from the various sources of information (DWA database, Water Situation Assessment Model (WSAM) database, Internal Strategic Perspective (ISP) documents, reconciliation strategy documents and any other relevant studies' reports) were used and the following criteria was used to select the final priority dams:

- All dams from the DWA Hydrological Information System (HIS) database
- Additional dams identified through any other study or by stakeholders
- Other dams constructed with the specific purpose to provide water for urban and/or rural water use
- Where a dam was specifically built for irrigation water supply (mainly some of the smaller dams).

3.9 GROUNDWATER RESOURCE UNIT AND ECOSYSTEM PRIORITISATION FOR THE OLIFANTS WMA

The framework selected for the purpose of groundwater RU prioritisation, was based on the DWA RQO method (DWA, 2011) which was focussed on the prioritisation of surface RUs. The RQO development approach (DWA, 2011) requires a set of criteria and sub-criteria to be weighted and rated to calculate a priority rating which is then normalised.

The set of criteria and sub-criteria that were selected for the groundwater prioritisation process was largely dictated by available datasets as well as input from the public participation process. The resultant table with the selected criteria as and the relative weights applied is shown in Table 7.

Criterion	Relative weighting	Sub-criteria	Relative weighting
Importance for users (Current & anticipated	30	Water character of a high quality	30
		Major aquifers	40
iuture usej		Activities that contribute to economy	30
Threat posed to users	30	Aquifers which are highly stressed	40
		Water quality is currently threatened	40
		Vulnerable aquifers	20

Table 7: Groundwater prioritisation criteria

³ Note that the number of wetlands to be selected was somewhat arbitrary but was at a minimum of 24 by the Project Steering Committee.
Criterion	Relative weighting	Sub-criteria	Relative weighting
		Groundwater importance to wetlands	45
Ecological Importance	30 Ground-surface water interactions	50	
		Important groundwater fauna	5
Management Considerations	10	Management plans already exist	100

Sub-criteria can have a spatial variability across the resource unit extent, but any sub-criteria can only have one rating in the proposed prioritisation model. To address this constraint the following rule set was applied:

- a) The sub-criteria category which covers the largest part of the resource unit is assigned.
- b) Rule (a) can be overridden through public participation if consensus was reached among the relevant role players.

3.9.1 IMPORTANCE FOR USERS

The sections that follow discuss the sub-criteria linked to the importance for users and the rating guideline that applies to each of the sub-criteria.

3.9.1.1 Water character of high quality

All available water quality data was obtained from the NGA for each of the RU's and the water quality data for these sites were used in generating an expanded Durov diagram which utilises the major anions and cations to produce a plot that characterises water in nine different regions. The plotting procedure of the expanded Durov diagram is available in Appendix E. A water quality score was assigned (Figure 3) to each of the nine regions to assist in evaluating the status of each RU. Since a Durov diagram only gives information about the character of the water, the EC parameter was also displayed to give an indication of the salinity of the water in question. The average values for the Olifants sites are displayed in Figure 4 and were evaluated against the SANS 241:2005 drinking water guidelines.

Resource Unit Prioritisation Report

Figure 3: Class assignment of expanded Durov diagram

Figure 4: Expanded Durov diagram with evaluation of EC

It should be noted that the chemistry data used, span over the entire time line available in the database. Applied date filters resulted in little or no data for various areas.

Determination of Resource Quality Objectives in the Olifants Water Management Area	Resource Unit
(WMA4) - WP10536	Prioritisation Report

The rating guideline applied to each RU for evaluating the water character is presented in Table 8 and the spatial distribution of the final ratings is shown in Figure 5.

Table 8	8: \	Nater	character	rating	guideline
---------	------	-------	-----------	--------	-----------

Rating	Guideline
0.0	RUs which contain a C water quality score
0.5	RUs which contain a B water quality score
1.0	RUs which contain an A water quality score

Figure 5: Spatial distribution of water character rating

3.9.1.2 Major aquifers

Groundwater occurrence was identified using the Geohydrological Yield map (DWAF, 2009) obtained from DWA. Three aquifer yield classes were defined as high, medium and low irrespective of the aquifer type as shown in Table 9. The resultant yield classification map is shown in Figure 6.

Table 9: Aquifer yield class

Aquifer Yield Class	Aquifer Yield Range
High	2.0 – 5.0 L/s
Medium	0.5 – 2.0 L/s
Low	0.0 – 0.5 L/s

Figure 6: Major aquifer classification map

The rating guideline applied to each RU for evaluating major aquifers are presented in Table 10 and the spatial distribution of the final ratings is shown in Figure 7.

Table 10	: Major	aquifer	rating	guideline
----------	---------	---------	--------	-----------

Rating	Guideline
0.0	RUs which contain or are dominated by poor aquifers (< 0.5 L/s)
0.5	RUs which contain or are dominated by minor aquifers (0.5 - 2 L/s)
1.0	RUs which contain or are dominated by major aquifers (> 2L/s)

Figure 7: Spatial distribution of major aquifers rating

3.9.1.3 Activities that contribute to the economy

Activities that contribute to the economy that could be dependent on groundwater were identified as farming, parks and mines. The datasets used to depict the aforementioned activities is as follows:

- Protected Areas (DWAF Groundwater Resource Assessment Phase 2, 2006)
- Cultivated Lands (SANBI Land Cover, 2009)
- Registered Groundwater Use (WARMS Data, 2013)
- High Yielding Aquifers as discussed in previous section

The resulting map of the aforementioned covers is shown in Figure 8. The mining activities are not explicitly shown due to the fact that if they utilise groundwater it should be included in the registered use as obtained from the WARMS database.

Figure 8: Activities that contribute to the economy

The rating guideline applied to each RU for evaluating the activities that contribute to the economy is presented in Table 11 and the spatial distribution of the final ratings is shown in Figure 9.

Rating	Guideline
0.0	RUs which do not directly support any activities which contribute to the economy
0.5	RUs which support activities which provide a moderate contribution to the economy
1.0	RUs which support activities which contribute significantly to the economy

Figure 9: Spatial distribution of contribution to the economy rating

3.9.2 THREAT POSED TO USERS

The sections that follow discuss the sub-criteria linked to the threat posed to users and the rating guideline that applies to each of the sub-criteria.

3.9.2.1 Aquifers which are highly stressed (relative aquifer stress)

The AFYM (Murray *et al*, 2011) was used to calculate the aquifer firm yield per quaternary catchment that comprises the various RUs. The existing use was expressed as a percentage of the firm yield to calculate a stress index. It is important to note that the firm yield model is very conservative. The default values for the quaternaries were used that was supplied with the model, which was sourced through the GRAII project. The stress indices were classified as high, medium and low and the class breaks were chosen by selecting the highest and lowest stress index and assigning the high class low class respectively. The remainder of the remainder of the indices were scaled accordingly.

The rationale behind the approach outlined above is to highlight quaternaries that are more stressed than others, even though they may not currently be stressed. There is a huge uncertainty in the current groundwater use figures and therefore it is not possible to calculate high confidence stress indices. The purpose of the prioritisation tool is only to highlight differences between RUs to assist in the prioritisation process and the relative stress index calculation allows for the generation of contrasts between the RUs.

The resulting aquifer stresses are shown in Figure 10.

Figure 10: Relative aquifer stress

The rating guideline applied to each RU for evaluating the relative aquifer stress is presented in Table 12 and the spatial distribution of the final ratings is shown in Figure 11.

Table 12: Re	elative aquife	r stress rating	g guideline
--------------	----------------	-----------------	-------------

Rating	Guideline
0.0	RUs which contain or are dominated by aquifers which are not stressed
0.5	RUs which contain or are dominated by aquifers which are moderately stressed
1.0	RUs which contain aquifers which are highly stressed

Figure 11: Spatial distribution of relative aquifer stress rating

3.9.2.2 Water quality currently threatened

There is not enough historic data available with good distribution across the study area to allow for the generation of a detailed groundwater quality map. The datasets used to visually show the current water quality across the area are:

- The TDS map to give indication of the regional groundwater salinity levels (DWAF Vegter Map, 1995)
- Current and Abandoned Mines (NWU Geography Department, author unknown)

Background groundwater quality is inherently related to the host geology and can be spatially highly variable depending on the geological and physical setting. Although mining operations can be indicative of potential groundwater quality issues, the evaluation of this sub-criterion relies heavily on the public participation process. The resultant map produced is shown in Figure 12.

Figure 12: Groundwater quality distribution map

The rating guideline applied to each RU for evaluating water qualities that are currently threatened is shown in Table 13 and the spatial distribution of the final ratings is shown in Figure 13.

Table 13: Water quality tha	at is threatened	I rating guideline
-----------------------------	------------------	--------------------

Rating	Guideline
0.0	RUs where potential threat to water quality is low
0.5	RUs where potential threat to water quality is moderate
1.0	RUs where potential threat to water quality is high

Figure 13: Spatial distribution of threat to water quality rating

3.9.2.3 Vulnerable aquifers

Aquifer vulnerability is addressed through the DRASTIC map (DWAF, 2011). The map comprise of the following parameters:

Parameter	Input dataset
Depth to water table (D)	126 263 groundwater levels from the NGDB (for 4 280 of these,
	the mean groundwater level was calculated from time-series
	data) were interpolated to a groundwater level grid.
Recharge (R)	Recharge calculated as part of GRAII-3 project.
Aquifer material (A)	1:1 million Geology from CGS
Soils (S)	WR90 soils data set
Topography and slope (T)	DWAF 20m DTM resampled to 1X1km
Impact of the vadose (unsaturated) zone (I)	1:1 million Geology from CGS
Hydraulic conductivity (C)	1:1 million Geology from CGS

Table 14: DRASTIC Parameters

The DRASTIC index has a maximum index of 200 which represents the highest aquifer vulnerability with respect to pollution. For the purpose of the prioritisation tool the following classes of DRASTIC index were adopted based on the index range for the study area:

- High Vulnerability (122-178)
- Medium Vulnerability (90-121)
- Low Vulnerability (60-89)

The resulting map is shown in Figure 14.

Figure 14: DRASTIC aquifer vulnerability

The rating guideline applied to each RU for evaluating aquifer vulnerabilities are shown in Table 15 and spatial distribution of the final ratings is shown in Figure 15.

Table 15:	Aquifer	vulnerability	rating	guideline
-----------	---------	---------------	--------	-----------

Rating	Guideline
0.0	RUs that are not vulnerable to pollution
0.5	RUs that are moderately vulnerable to pollution
1.0	RUs that are highly vulnerable to pollution

Figure 15: Spatial distribution of aquifer vulnerability rating

3.9.3 ECOLOGICAL IMPORTANCE

The sections that follow discuss the sub-criteria linked to the ecological importance and the rating guideline that applies to each of the sub-criteria.

3.9.3.1 Groundwater importance to wetlands

The wetland cover generated for the study area was used and only wetlands associated with possible groundwater dependence were considered. The spatial distribution of the wetlands directly affected by groundwater are shown in Figure 16.

Figure 16: Wetlands directly affected by groundwater in the study area.

Evaluation of the wetlands posed difficult due to the large number and the uncertainty with regard to groundwater, therefore the wetland densities per RU was used in the evaluation. The rating guideline applied to each RU for evaluating groundwater importance to wetlands is shown in Table 16 and the spatial distribution of the final rating is shown in Figure 17.

Rating	Guideline
0.0	RUs which contain wetlands with low groundwater importance
0.5	RUs which contain wetlands with moderate groundwater importance
1.0	RUs which contain wetlands with high groundwater importance

Figure 17: Spatial distribution of wetlands directly affected by groundwater rating.

3.9.3.2 Surface-groundwater water interaction

Surface-groundwater interaction is an on-going field of research and this component is very expensive to measure. This has resulted in models being used to predict the groundwater contribution to baseflow. For the purpose of the prioritisation tool the estimated groundwater contribution to baseflow (GRDM, Van Tonder, 2000) was expressed as a percentage of the MAR. The resultant map is shown in Figure 18.

Figure 18: Surface-groundwater interaction

The rating guideline applied to each RU for evaluating the surface-groundwater interaction is shown in Table 17 and the spatial distribution of the final ratings is shown in Figure 19.

Table 17: Surface-groundwate	r interaction rating guideline
------------------------------	--------------------------------

Rating	Guideline
0.0	RUs which contain insignificant GW-SW interaction
0.5	RUs which contain moderate GW-SW interaction
1.0	RUs which contain significant GW-SW interaction

Figure 19: Spatial distribution of surface-groundwater interaction rating

3.9.3.3 Important groundwater fauna

This sub-criteria has been included for the sake of completeness, but no database exist that can be used to apply this specific sub-criteria. Table 18 shows the rating guideline to be used once this type of data is available.

Table 18:	Important	groundwater fauna	rating guideline
-----------	-----------	-------------------	------------------

Rating	Guideline
0.0	RUs which contain little groundwater fauna
0.5	RUs which contain moderate groundwater fauna
1.0	RUs which contain major groundwater fauna

3.9.4 MANAGEMENT CONSIDERATIONS

A dataset that shows the existence of management plans is not available and this criterion relies heavily on the inputs from the public participation. It is assumed that existing mines will have management plans and therefore existing mining locations is used as secondary indicator to where management plans might exist. Figure 20 shows existing mining positions (reference of dataset is unknown, obtained from the NWU Geography Department).

Figure 20: Current mining positions assumed to have management plans

Table 19 shows the rating guideline to be applied to the selected RUs and the spatial distribution of the final ratings is shown in Figure 21.

Table 19: Contribution to economy rating guidelin	Table 19:	Contribution	to economy	rating	guideline
---	-----------	--------------	------------	--------	-----------

Rating	Guideline
0.0	RUs which do not contain groundwater resources for which management plans exist
1.0	RUs which contain groundwater resources for which management plans exist

Figure 21: Spatial distribution of management plans rating

4 FINDINGS

4.1 PRIORITY RIVER RESOURCE UNITS FOR THE OLIFANTS WMA

The application of the RUPT and refinement by stakeholders resulted in the selection of 30 priority RUs for the Olifants WMA. These RUs and associated IUAs as well as their relationship to the PES-EIS desktop study, Water Resource Classification study, and Reserve studies are detailed in Table 20. The location of these Resource Units is shown in Figure 22.

RU	IUA	Reach (PES- EIS)	Hydronode (WRC)	EWR site	Level of Reserve
9	1	B11J-01155	HN9		
11	1	B11J-01086	HN11		
12	1	B11L-01051	HN12		
13	1	B11L-01024	HN13		
24	2	B20D-01146	HN24		
31	2	B20J-00998	HN31	EWR4	Comprehensive
40	3	B32D-00855	HN40		
46	4	B31G-00769	HN46		
47	5	B31J-00648	HN47		
49	5	B32H-00698	HN49		
52	5	B51B-00589	HN52		
53	5	B51C-00509	HN53		
54	6	B41A-01025	HN54		
56	6	B41C-00766	HN56		
57	6	B41E-00689	HN57		
62	6	B41G-00674	HN62		
66	6	B41K-00487	HN66	EWR10	Comprehensive
72	7	B71A-00390	HN72		
82	8	B42H-00553	HN82		
83	9	B60F-00632	HN83		
86	9	B60H-00485	HN86		
95	10	B71F-00393	HN95		
96	10	B71G-00428	HN96	EWR11	Comprehensive
97	10	B72A-00405	HN97		
98	10	B72C-00406	HN98		
103	11	B72K-00260	HN103	EWR14b	Comprehensive
104	11	B72K-00260	HN104		
105	12	B72D-00326	HN105	EWR13	Comprehensive
116	12		HN116		
121	13	B60D-00525	HN121		

Table 20: Priority River Resource Units selected for the Olifants WMA.

Figure 22: River Resource Units prioritised for the Olifants WMA

4.2 PRIORITY WETLAND ECOSYSTEMS FOR THE OLIFANTS WMA

4.2.1 EXTENT OF MAPPED WETLANDS IN THE OLIFANTS CATCHMENT

The extent of mapped wetlands used to inform the prioritisation of wetlands in the Olifants catchment is presented in Figure 23, below. Whilst the concentration of wetlands in the upper Olifants is exacerbated to some extend by the increased mapping intensity in this area, the upper catchment is characterized by a much higher occurrence of wetlands than the remaining catchment. Poor mapping of wetlands across much of the study area is a serious limitation in this study however and should be refined for future assessments of this nature.

Figure 23: Distribution of mapped wetlands in the Olifants catchment.

4.2.2 RESULTS OF THE DESKTOP PRIORITISATION EXERCISE

A brief summary of the results of the wetland prioritisation exercise undertaken for the Olifants catchment is presented here. This includes relevant maps indicating the relative importance of mapped wetlands for each of the primary criteria used to inform the prioritisation and selection process.

4.2.2.1 Location of wetlands within each IUA

The rating of wetlands based on their location relative to primary drainage lines and IUA outlets in presented in Figure 24, below. This identifies wetlands which would be worth selecting based on their potential usefulness in providing a measure of the effectiveness of upstream management measures in meeting water resource classification commitments. It is worth noting here that sparse mapping of wetlands in lower catchment areas sometimes meant that no wetlands were flagged in some IUAs.

Figure 24: Rating of wetlands based in their location along main stem rivers and potential for integrating impacts associated with the upstream IUA.

4.2.2.2 Concern for users

The outcome of this exercise was a rating of wetlands based on an assessment of the importance of wetland resources to users and the threat posed to wetland systems (Figure 25). Not surprisingly, this highlights wetlands in the upper Olifants that are subject to high threats from mining activities. Wetlands identified as being potentially important in providing regulating and supporting services (regarded as particularly important in this catchment) also feature prominently.

Figure 25: Prioritisation of wetlands based on concern for users in the Olifants catchment.

4.2.2.3 Concern for environment

Wetlands were also rated based on the importance of water resources from a conservation / protection perspective and threats posed to these resources (Figure 26). This paints a somewhat different picture, with wetlands in upper (largely un-impacted) catchment areas and those associated with protected areas featuring highly in the assessment.

Figure 26: Map indicating the ratings of wetlands based on environmental criteria.

4.2.2.4 Practical considerations

For this component of the assessment, wetlands were prioritised based on the anticipated availability of baseline data that could inform the RQO process (Figure 27). There is unfortunately very little information available for the study area with only two known sites selected by DWS for wetland monitoring and a handful of sites where the Working for Wetland programme has been working.

Figure 27: Wetland rating based on practical considerations (reflecting available data sources).

4.2.3 WETLANDS INITIALLY IDENTIFIED BY KEY STAKEHOLDERS

A wide range of candidate wetland systems were identified independently through engagement with local stakeholders. The location of these sites is indicated in Figure 28 below and includes a large number of wetlands in IUA6 (Steenkampsberg area) and a range of other sites in the Upper Olifants catchment⁴.

⁴ Note that this excludes sites identified by Gary Marneweck which were identified and discussed as part of the final selection process.

Figure 28: Priority wetlands identified by local stakeholders.

4.2.4 WETLANDS SELECTED FOR RQO DETERMINATION

Once candidate wetlands had been identified, these were screened in consultation with key stakeholders. The location of priority wetlands selected through the process is indicated in Figure 29, below. Further details including a review of the importance of wetlands in providing goods and services within each IUA which informed the selection process is documented for each IUA in this section of the report presented below.

Figure 29: Map indicating the distribution and location of wetlands prioritized for RQO determination in the Olifants catchment.

4.2.4.1 IUA 1: Upper Olifants WMA

Overview of water resources in the IUA

The river ecosystems in the IUA are degraded and mainly in an E category presently due to the coal mining activities, large dams and urbanisation. Based on available wetland information, approximately 49% of wetlands in the catchment occur in this IUA. As such, wetland management should be regarded as a key focus in this IUA if wetland protection targets are to be achieved and functional characteristics maintained. Most wetlands are moderately to largely modified (C-D PES) although some good condition wetlands still persist (Figure 30). Incision of wetland systems is a common occurrence and has significantly undermined the ability of wetlands in this catchment to perform regulating and supporting services.

Figure 30: Wetland types and consolidated PES data for IUA 1.

Boous and services provided by wellands					
Regulating & supporting services			Provisioning services	Cultural	Riodivorsity
Flood attenuation	Sediment trapping & erosion Control	Water Quality Enhancement	Livelihood Support	Support	maintenance
Moderate	Moderate	Very High	Very Low	Very Low	High

Goods and services provided by wetlands

An evaluation of flood attenuation suggests that a large number of floodplain and unchannelled valley bottom wetlands are potentially important in providing this service. The report by Anchor Environmental (DWA, 2010) suggests that the value of this service is quite low relative to other wetlands such as those located in the Pongola catchment.

Wetlands in the upper reaches of the catchment have been flagged as having a potentially high importance for sediment and erosion control. Wetlands lower in the catchment are typically regarded as having a lower importance for this service.

Coal mining and power generation results in significant impacts on water quality with significant impacts on electrical conductivity and sulphate concentrations (DWA, 2012). Defunct coal mines also contribute significantly to acid mine drainage (low pH). This has been reported in the Middelburg dam where the pH, nitrate, nitrite and ammonia fall within the unacceptable range. Available information on heavy metals shows unacceptably high levels in parts of the catchment. Indeed, high aluminium concentrations have been cited as possible cause of fish deaths in Loskop dam (DWA, 2012). Extensive agricultural areas are also likely to contribute nutrients and toxic organic chemicals associated with herbicides and pesticides. As such, water quality enhancement functions are regarded as very important in this IUA. This is clearly reflected in the prioritisation process which highlighted a large number of wetlands as having a very high water quality enhancement potential. The importance of wetlands and rivers in providing a water purification function was also highlighted by Anchor Environmental (DWA, 2010) as highest in the Upper Olifants catchment.

While many wetlands are heavily impacted, some wetlands of high ecological importance do occur, particularly in the upper reaches of the catchment. Such wetlands are typically associated with critically endangered wetland types. Overall importance of wetlands from a biodiversity maintenance perspective is regarded as high.

Focus of wetland selection

Given the extremely high importance of water quality enhancement functions provided by wetlands, it is important to ensure that these services are maintained and enhanced where possible. As such, **a series of** wetlands providing this service have been prioritised and selected for RQO determination.

Wetlands have also been flagged as having a high biodiversity maintenance function with a large number of wetlands flagged as NFEPA wetlands. As such, *a series of wetlands have also been selected to monitor changes to wetlands flagged as having a high biodiversity priority.*

Selected wetlands

The location of wetlands selected for RQO determination in this IUA is indicated in Figure 31 whilst details of each of the selected wetlands is included in Table 21.

Figure 31: Map showing the location of prioritised wetlands for RQO determination in IUA1.

Wetland	Motivation
1.1 Blesbokspruit	While identified as a wetland FEPA, there is no information on the specific
wetland	conservation values identified. The wetland is well placed to provide a water
	quality and flood protection function but is threatened by headward erosion.
	Wetland components have been prioritized to ensure that water quality
	enhancement and biodiversity maintenance functions are not undermined
1.2 Rietspruit wetland	Little information exists about the importance of this particular wetland. It has
	however been flagged for protection through the NFEPA process. Preventing
	incision is regarded as critical for maintaining habitat attributes. It also provides a
	corridor for species movement, with otters utilising the area. The wetland is also
	well placed to provide a water quality and flood protection function. Wetland
	attributes have therefore been prioritized to help ensure that key services
	identified are maintained.
1.3 Kriel wetland	The wetland is located directly downstream of mining operations in the catchment
	upstream of Witbank Dam. Livestock watering is also important downstream but
	can be jeopardized by poor water quality. While being well placed to provide an
	important water quality enhancement function, the wetland is affected by
	headward erosion that is undermining these functions
1.4 Klippoortjiespruit	Little information exists about the importance of this particular wetland. It has
wetland	however been flagged for protection through the NFEPA process and is one of the
	more intact unchannelled valley bottom wetlands remaining in the upper Olifants
	catchment.
1.5 Koringspruit	This wetland is located within a mining landscape upstream of the Witbank dam.
wetland	Most wetlands have been significantly affected by mining operations and channel

Table 21:	Motivation	for selected	wetlands	in IUA1.

Wetland	Motivation
	incision that has significantly undermined their functional value. This wetland
	includes a section of unchannelled valley bottom habitat important for water
	quality enhancement but is threatened by headward erosion.
1.6 Klipspruit wetland	This extensive unchannelled valley bottom wetland is located directly downstream
	of Witbank Town and receive water from old mines, urban areas and waste water
	treatment works. Given the sites location downstream of these impacts and
	upstream of Loskop dam and other areas used for recreational activities, the wetland clearly provides a critical water quality enhancement function.
1.7 Klein Olifants	This wetland is largely intact and is likely to be a representative wetland of this
tributary	wetland vegetation group. The wetland also falls within an area where wetlands
	have been flagged as important for crane conservation. Maintenance of wetland
	vegetation and associated wetland habitat for cranes is therefore regarded as a
	priority.
1.8 Matla wetland	This wetland is located in the upper catchment and is largely intact and is
	therefore a useful intact example of wetlands within this wetland vegetation group.
	The wetland also falls within an area where wetlands have been flagged as
	important for crane conservation. Maintenance of wetland vegetation and
	associated wetland habitat for cranes and other wetland-dependant biota is
	therefore regarded as a priority.
1.9 Woes-Alleenspruit	The wetland is located in the Middleburg Dam catchment and directly downstream
wetland	of extensive coal mining operations. It is therefore well placed to provide a water
	quality enhancement function.
1.10 Bosmanspruit	The wetland is located in the Middleburg Dam catchment and directly adjacent
wetland	extensive coal mining operations. It is therefore well placed to provide a water
	quality enhancement function.
1.11 Kopermyn wetland	This is a large example of reasonably intact valley bottom wetland downstream of
	mining operations with further mining anticipated in the catchment (high mining
	potential). The wetland provides useful habitat for wildlife & provides a range of
	regulating and supporting services important for downstream users.

4.2.4.2 IUA 2: Wilge River catchment area

Overview of water resources in the IUA

The rivers in the IUA are in a moderately modified state (category C) with less developed areas in the catchment. Impacts within the catchment are related to agriculture, dams and some mining. Based on available wetland information, approximately 34% of wetlands in the catchment occur in this IUA. As such, wetland management should also be regarded as a key focus in this IUA if wetland protection targets are to be achieved and functional characteristics maintained. While most wetlands are moderately modified (C PES), fairly extensive wetland areas still remain in good condition (B PES) (Figure 32).

Figure 32: Wetland types and consolidated PES data for IUA 2.

Goods and services provided by wetlands

Regulating & supporting services			Provisioning services	Cultural	Biodiversity	
Flood attenuation	Sediment trapping & erosion Control	Water Quality Enhancement	Livelihood Support	Support maintenance		
Low	Moderate	High	Low-Moderate	Very Low	Moderate - High	

An evaluation of flood attenuation functions suggests that a fair number of floodplain and unchannelled valley bottom wetlands are potentially important in providing this service. The report by Anchor Environmental (DWA, 2010) however suggests that the value of this service is quite low relative to other wetlands such as those located in the Pongola catchment.

Wetlands in the upper reaches of the catchment have been flagged as having a potentially high importance for sediment and erosion control. Wetlands lower in the catchment are typically regarded as having a lower importance for this service.

Extensive agricultural areas are also likely to contribute nutrients and toxic organic chemicals associated with herbicides and pesticides. Wetlands in this catchment are generally rated as having a moderate to high value in terms of improving water quality. This is consistent with the findings of Anchor Environmental (DWA, 2010) who emphasised the importance of water resources in the Upper Olifants catchment in providing this service.

Most wetlands in the catchment have a moderate ecological importance. There are however a number of wetlands that have been flagged as having a high ecological importance.

Focus of wetland selection

Given the high importance of water quality enhancement functions provided by wetlands, it is important to ensure that these services are maintained where possible. As such, *a series of wetlands providing this service have been prioritised and selected for RQO determination in this IUA.*

A number of wetlands were also flagged as having a high biodiversity maintenance function. A sub-set of wetlands were therefore also selected to monitor changes to wetlands of high biodiversity value.

Selected wetlands

The location of wetlands selected for RQO determination in this IUA is indicated in Figure 33 whilst details of each of the selected wetlands is included in Table 22.

Figure 33: Map showing the location of prioritised wetlands for RQO determination in IUA2.

Wetland	Motivation
2.1 Elandsvlei pan	This cluster of pans was identified as an area of exceptional biodiversity
system	importance as part of the NFEPA process. They have also been highlighted as
	providing important habitat for grass owls within a largely transformed catchment.
2.2 Koffiespruit tributary	This wetland is largely intact and is likely to be a representative wetland of this
	wetland vegetation group. Maintaining vegetation characteristics is regarded as
	most important from a biodiversity perspective.
2.3 Delmas wetland	This wetland is located in an urban context and downstream of a waste water
	treatment works and old waste disposal facilities. Management of the waste water
	treatment works is reportedly problematic with a blue drop score of 18% obtained
	in 2011. The wetland is therefore well placed to improve poor water quality and
	reduce potential negative health effects for local communities.
2.4 Bronkhorstspruit	This large, extensive unchannelled valley bottom wetland FEPA provides
tributary	important habitat for the African Grass Owl (Tyto Capensis). Given the agricultural
	context and anticipated expansion of future mining operations, the wetland is also
	well placed to improve water quality.
2.5 Wilge tributary	This is one of few largely intact valley bottom wetlands that remain in the upper
	Wilge catchment. The wetland system is also located within a priority mining area
	and is therefore well placed to reduce water quality impacts.
2.6 Zaalklap wetland	This naturally unchannelled valley bottom has been flagged as a wetland FEPA
	based on its importance for biodiversity maintenance. The wetland supports
	healthy populations of marsh owls whilst the reed beds are used for roosting by
	large numbers of Cattle Egrets. Given the wetlands location directly downstream
	of coal mining operations, the wetland is also well placed to improve water quality

Table 22:	Motivation	for selected	wetlands in	IUA2.
	mouration		monanao in	

Wetland	Motivation
	for downstream users. Rehabilitation efforts are currently underway to improve
	the functionality of the system.
2.7 Saalboomspruit	This naturally unchannelled valley bottom has been flagged as a wetland FEPA
wetland	and is known to support unusually large populations of African Snipe (Gallinago
	nigripennis). Given the wetlands location directly downstream of coal mining
	operations, it is also well placed to improve water quality for downstream users.

4.2.4.3 IUA 3: Selons River area including Loskop Dam

Overview of water resources in the IUA

The state of the rivers in the IUA have been moderately degraded (B to C category), mainly due to the upstream impacts from the Olifants and Klein Olifants Rivers. The PES of the main stem of the Olifants River is a C with the REC of a B due to upstream flow regulation and water quality problems. The extent of wetlands are limited and are generally moderately modified with few intact areas (A/B PES) remaining (Figure 34.

Figure 34: Wetland types and consolidated PES data for IUA 3.

Regulating & supporting services			Provisioning services	Cultural	Biodiversity
Flood attenuation	Sediment trapping & erosion Control	Water Quality Enhancement	Livelihood Support	Support	maintenance
Low	Low-Moderate	Low (High above Loskop Dam)	Low-Moderate	Low	Low-Moderate (High for few local sites)

While some wetlands score moderately high in relation to flood attenuation and sediment trapping, wetlands are generally regarded as having a low to moderate value in relation to these services.

Coal mining and power generation results in significant impacts on water quality with significant impacts on electrical conductivity and sulphate concentrations coming from the upstream IUA (DWA, 2012). Available information on heavy metals shows unacceptably high levels in parts of the catchment. Indeed, high aluminium concentrations have been cited as possible cause of fish deaths in Loskop dam (DWA, 2012). The majority of wastewater treatment works associated with the local municipalities is producing an effluent which does not meet their licence requirements (DWA, 2012). Works discharge water with high organic, nutrient and microbial loads and have resulted in eutrophic conditions of the upper reaches of Loskop Dam. Wetlands directly upstream of Loskop dam are therefore likely to provide a high water quality enhancement functions. The importance of other wetlands is generally low.

While Loskop Nature Reserve is an important area for recreational and tourism purposes, few wetlands occur in this protected area. As such, the importance of wetlands in providing cultural services is regarded as low.

The importance of wetlands in maintaining biodiversity is generally low with few wetlands prioritised from a biodiversity conservation perspective. Wetlands flagged as potentially important for protection were generally degraded, with few intact wetland areas remaining.

Focus of wetland selection

The most important service highlighted is that associated with water quality enhancement above Loskop Dam. Wetlands flagged as potentially providing this service are better treated as riparian zones however and should be incorporated as part of the river assessment. While some wetland FEPAs has been identified in the IUA, few were well suited to RQO determination. *As a consequence only a single wetland system was selected for RQO determination in this IUA.*

Selected wetlands

The location of the wetland selected for RQO determination in this IUA is indicated in Figure 35 whilst details of each of the selected wetlands is included in Table 23.

Figure 35: Map showing the location of prioritised wetlands for RQO determination in IUA3.

Wetland	Motivation
3.1 Klein Olifants	This wetland FEPA is largely intact and is a useful example of this wetland
Tributary	vegetation group. The wetland also falls within an area prioritized for crane conservation. Maintenance of wetland vegetation and associated wetland habitat
	is therefore regarded as a priority.

Table 23: Motivation for the selection of wetlands in IUA3

4.2.4.4 IUA 4: Elands River catchment area

Overview of water resources in the IUA

The IUA is mainly rural in the upper reaches of the catchment with impacts from agriculture, dams, towns and informal settlements in the lower reaches of the catchment. The upper reaches of the Elands River are in a moderately modified ecological state (C category), but degrades along the river to a D category below the dams. Wetland extent is very limited and conditions are highly variable with approximately equal extents of wetlands in good (A/B PES), moderately modified (C PES) and seriously modified (E/F PES) (Figure 36).

Figure 36: Wetland types and consolidated PES data for IUA 4.

Regulating & supporting services			Provisioning services	Cultural	Biodiversity
Flood attenuation	Sediment trapping & erosion Control	Water Quality Enhancement	Livelihood Support	Support	maintenance
Low – Moderate	Low - Moderate	Moderate	Low - Moderate	Low	Low - Moderate

Goods and services provided by wetlands

While wetlands in this IUA were generally characterized as providing limited flood attenuation and sediment retention values, wetlands located close to and downstream of the confluence of the Elands and Gotwane Rivers were flagged as having a potentially high flood attenuation and sediment retention capacity. On further interrogation, these features were found to be artificial in nature and associated with the inflow into the Mkhombo dam.

Intensive agricultural practices in the Elands River catchment could contribute pesticide and herbicides to the local river and wetland ecosystems (DWA, 2012). While some wetlands have been highlighted as being potentially important in providing this service, water quality issues are significantly lower in this IUA than in others in the catchment.

The ecological importance and sensitivity of wetlands in this catchment generally scored low. A few areas were flagged as important for biodiversity conservation however. Information on these systems was generally lacking, with no supporting information provided by biodiversity stakeholders consulted as part of the process. The prioritisation exercise did serve to highlight a number of priority wetland resource units however which were interrogated further.
Determination of Resource Quality Objectives in the Olifants Water Management Area	Resource Unit
(WMA4) - WP10536	Prioritisation Report

Focus of wetland selection

The importance of wetlands in providing ecosystem goods and services is generally regarded as low when compared with other IUAs. A single wetland was however selected from a biodiversity maintenance perspective.

Selected wetlands

The location of the single wetland selected for RQO determination in this IUA is indicated in (Figure 37) whilst details of each of the selected wetlands is included in Table 24.

Figure 37: Map showing the location of the single wetland prioritised for RQO determination in IUA4.

Table 24:	Motivation	for selecting	wetlands	in IUA4.
-----------	------------	---------------	----------	----------

Wetland	Motivation
4.1 Elands tributary	Despite being moderately modified, this large wetland has been identified as
wetland	wetland FEPA supporting crane populations. Maintenance of appropriate habitat
	attributes is therefore regarded as important.

4.2.4.5 IUA 5: Middle Olifants up to Flag Bashielo Dam

Overview of water resources in the IUA

The rivers in this IUA are mainly in a C category as the upstream impacts (mainly water quality related) are somewhat mitigated by Loskop Dam. The ecological importance of the rivers in the IUA is moderate with a few conservation areas present. Large areas of this IUA are almost endoreic and groundwater is the major source of water in these catchments. While the extent of wetlands is extremely limited, a large proportion of wetlands remain in good condition (A/B PES) although more than 50% are moderately to seriously modified (Figure 38).

Figure 38: Wetland types and consolidated PES data for IUA 5.

Regulating & supporting services		Provisioning services	Cultural	Biodiversity	
Flood attenuation	Sediment trapping & erosion Control	Water Quality Enhancement	Livelihood Support	Support	maintenance
Low (Moderate – High along Lower Olifants)	Low (Moderate – High along Lower Olifants)	Low - Moderate	Low - Moderate	Low - Moderate	Low

Goods and services provided by wetlands

The flood attenuation and sediment trapping capacity of wetlands is generally regarded as low in this IUA. The lower Olifants (towards the IUA outlet) was however been highlighted as a potential priority area.

Unacceptable EC concentrations in the lower reaches of the Elands River are due to irrigation return flows and concentration due to evaporation of water from the low flows (DWA, 2012). Intensive agricultural practices in the Moses River catchment could also contribute pesticide and herbicides to the local river and wetland ecosystems (DWA, 2012). This, together with an evaluation of the water quality enhancement service value of wetlands undertaken as part of this project, suggest a low-moderate importance of wetlands in providing this service. This is supported by Anchor Environmental (DWA, 2010) whose calculations suggested a moderate value of this service in the mid reaches of the Olifants catchment.

The importance of wetlands in maintaining biodiversity generally scored low in this catchment.

Focus of wetland selection

While the importance of wetlands is generally low in this IUA, some wetlands were flagged as potentially important for flood attenuation and sediment trapping along the lower reaches of the Olifants catchment. Following further interrogation, a decision was made *not to include any wetlands from this IUA for RQO determination.*

Selected wetlands

No wetlands were selected in this IUA.

4.2.4.6 IUA 6: Steelpoort River catchment

Overview of water resources in the IUA

While some river tributaries remain in good condition, the present state of the lower reaches of Steelpoort River has been modified from the natural (D category) due to impacts from agriculture and settlements. The Klip and Dwars rivers are still in a good present state. However, the impacts from mining on the Dwars River have resulted in a moderately modified state (B/C category).

Determination of Resource Quality Objectives in the Olifants Water Management Area	Resource Unit
(WMA4) - WP10536	Prioritisation Report

Most wetlands in the catchment are in a good condition (A/B PES) (Figure 39). These are typically located in the upper catchment area with few wetlands in the lower reaches of the IUA.

Figure 39: Wetland types and consolidated PES data for IUA 6.

Regulating & supporting services			Provisioning services	Cultural	Biodiversity	
Flood attenuation	Sediment trapping & erosion Control	Water Quality Enhancement	Livelihood Support	Support	maintenance	
Moderate	Moderate	Low	Moderate	Low (High for Verloren Valei)	High – Very High	

Goods and services provided by wetlands

The flood attenuation and sediment trapping capacity of wetlands is generally regarded as moderate in this IUA.

Levels of land transformation are typically low in this catchment relative to other IUAs with moderate levels of cultivation, restricted largely to the upper reaches of the Steelpoort River. Mining, forestry and urban areas are present but are limited in extent. As a consequence, the demand for water quality enhancement functions of wetlands in this IUA is generally regarded as low.

Based on climatic conditions, demographics and settlement patterns, provisioning services provided by wetlands are likely to be moderately important across much of this catchment. This is supported by Anchor Environmental (DWA, 2010) who highlighted a high reliance of communities on rivers and springs for domestic supply in sections of this IUA. Sections of this IUA were also highlighted as moderately important for raw material harvesting (DWA, 2010).

The importance of wetlands in contributing towards recreational and tourism values (Cultural support) is generally low but with high values associated with Verloren Valei Nature reserve and Ramsar site in the upper catchment.

This IUA is one of the most important from a conservation perspective with a large number of wetlands (particularly in the upper catchment) highlighted as having a high to very high ecological importance. Working for Wetlands has worked in a number of priority areas in the catchment providing some baseline data for these sites. Protection and management of priority wetlands is regarded as a key priority in this IUA, particularly in areas under current or future threat.

Focus of wetland selection

Wetlands in the upper reaches of the Steelpoort catchment have been flagged as being very important for biodiversity maintenance (and supporting tourism activities in Verloren Valei and surrounds). As such, *a*

Determination of Resource Quality Objectives in the Olifants Water Management Area	Resource Unit
(WMA4) - WP10536	Prioritisation Report

number of wetlands have been selected for RQO determination based on their biodiversity priority, threats of degradation and need for appropriate protection and management.

Selected wetlands

The location of wetlands selected for RQO determination in this IUA is indicated in Figure 40 whilst details of each of the selected wetlands is included in Table 25.

Figure 40: Map showing the location of wetlands prioritized for RQO determination in IUA6.

Wetland	Motivation
6.1 Lakenvlei wetland	The Lakenvlei wetland complex is one of the largest, pristine peatland wetland
complex	systems in Mpumalanga. The wetland supports important populations of
	threatened bird species including the Grey Crowned Crane (EN), Wattled Crane
	(CR) and White-winged Flufftail (CR). Some rehabilitation has taken place on
	sections of the wetland. It is also a major supplier of high quality water.
6.2 Welgevonden	This FEPA wetland system is located in the upper reaches of the catchment and
wetland	forms part of a priority wetland cluster. The wetland is important for biodiversity
	conservation as it contains peatland areas and supports important crane
	populations.
6.3 Draaikraal	This large FEPA wetland system is located within an agricultural context and
wetland_1	important for biodiversity conservation as it contains peatland areas and supports
	important crane populations. The site has been historically targeted for
	rehabilitation by WFWetlands.
6.4 Draaikraal	This NFEPA wetland system contains important peatland areas and supports
wetland_2	threatened crane populations. The wetland is still in good condition despite
	surrounding agricultural land use pressures.

Table 25:	Motivation	for selecting	wetlands	in	IUA6

Wetland	Motivation					
6.5 Draaikraal	This large unchannelled peatland has been identified as a FEPA and supports					
wetland_3	breeding populations of cranes. Wetland rehabilitation was previously					
	implemented in this wetland to address impacts of historical drainage.					
6.6 Belfast wetland_1	This valley bottom wetland is located in an urban setting alongside Belfast town					
	and upstream of the Belfast dam. It is therefore well placed to improve water					
	quality in this important local catchment.					
6.7 Belfast wetland_2	This valley bottom wetland is located in an urban setting and directly upstream of					
	Belfast dam which is used to supply Belfast town with potable water. Upstream					
	mining activities together with overflow from the waste water treatment works pose					
	a threat to water quality. This wetland has therefore been prioritized based on its					
	water quality enhancement functions.					

4.2.4.7 IUA 7: Middle Olifants below Flag Boshielo Dam to upstream of Steelpoort River

Overview of water resources in the IUA

The present state of the main stem river is in a B/C category that is mainly due to agricultural impacts. Wetlands are extremely limited in extent in this catchment. Wetlands along the main Olifants have been modelled as having an A/B PES but this is unlikely to reflect reality (Figure 41). The actual condition of wetlands is therefore likely to be lower than suggested by available data. The extent of wetlands is very limited in this IUA with most wetlands associated with river systems.

Figure 41: Wetland types and consolidated PES data for IUA 7.

Regulating & su	pporting services	rvices Provisioning services Cultural		Biodiversity	
Flood attenuation	Sediment trapping & erosion Control	Water Quality Enhancement	Livelihood Support	Support	maintenance
Low (High along Olifants)	Low (High along Olifants)	Low (High along Olifants)	Moderate	Low	Low

Goods and services provided by wetlands

The flood attenuation and sediment retention functions of wetlands are generally regarded as low except for wetlands located along the Olifants River. The same applies to water quality enhancement functions.

Based on climatic conditions, demographics and settlement patterns, provisioning services provided by wetlands are likely to be moderately important across much of this catchment. This is supported by Anchor

Environmental (DWA, 2010) who highlighted a high reliance of communities on rivers and springs for domestic supply in sections of this IUA.

While the Bewaarkloof Nature Reserve and IBAs occur in this study area, few wetlands are associated with these areas. As such, wetlands are likely to contribute little to tourism and recreational use.

The ecological importance of wetlands is generally regarded as low in this catchment.

Focus of wetland selection

While the importance of wetlands is generally low in this IUA, some wetlands were flagged as potentially important for flood attenuation, sediment trapping and water quality enhancement along the Olifants mainstem. On closer investigation, wetland features were limited in extent and are likely to have a low-moderate functional value. *No wetlands were therefore selected in this IUA.*

Selected wetlands

No wetlands were selected in this IUA.

4.2.4.8 IUA 8: Spekboom catchment

The distribution of mapped wetlands is again limited in this IUA, with most wetland identified as occurring in the upper catchment. The prioritisation process served to highlight potentially useful wetland areas along the lower reaches of the Spekboom River (Figure 16). Two potential wetland areas have been identified, one of which should be selected for RQO determination in this catchment.

Map showing the location of prioritised wetlands and prioritized candidate sites for RQO determination in IUA8. This

Overview of water resources in the IUA

The present state of the Spekboom, Dorps and Waterfalls rivers range from almost natural (Waterfalls source) to degraded (Dorps). The impacts are mainly from urbanisation and some agriculture in the catchment. The extent of wetlands in this IUA is limited and mainly occurs in the upper reaches of the IUA. Wetlands in the upper catchment remain in a largely untransformed state (A/B PES) with wetlands associated with more developed areas typically falling within a moderately modified state (C PES category) (Figure 42).

Figure 42: Wetland types and consolidated PES data for IUA 8.

Regulating & supporting services			Provisioning services	Cultural	Biodiversity
Flood attenuation	Sediment trapping & erosion Control	Water Quality Enhancement	Livelihood Support	Support	maintenance

Goods and services provided by wetlands

Determination of Resource Quality Objectives in the Olifants Water Management Area	Resource Unit
(WMA4) - WP10536	Prioritisation Report

Moderate	Moderate	Low	Low - Moderate	Low	Low - Moderate

The flood attenuation and sediment retention function of wetlands is generally regarded as moderately important in this IUA.

Much of the catchment remains untransformed with only localised water quality concerns. The importance of wetlands in providing water quality enhancement functions is therefore generally regarded as low.

Based on climatic conditions, demographics and settlement patterns, provisioning services provided by wetlands are likely to be low - moderately important across much of this catchment.

While some protected areas occur in the catchment, these contain few wetlands. As such, the value of wetlands in providing cultural support (recreation and tourism) is regarded as low.

From a biodiversity maintenance perspective, some wetlands have a moderate to high ecological importance. Most wetlands are however regarded as being of a low conservation importance with no high priority wetlands that are under threat identified through the assessment.

Focus of wetland selection

The extent of wetlands in this catchment is limited. Ecosystem goods and services values are also regarded as low and as such, *no wetlands have been selected in this IUA*.

Selected wetlands

No wetlands were prioritized for RQO determination in this IUA.

4.2.4.9 IUA 9: Ohrigstad River catchment area

Overview of water resources in the IUA

While much of the catchment remains untransformed, the Ohrigstad River has been impacted by agriculture (occurring along the main river) and is presently in a C category. The extent of wetlands in this IUA is extremely limited with only one extensive wetland mapped in the upper reaches of the IUA. Wetland conditions are generally moderately modified (C PES) (Figure 43).

Goods and services provided by wetlands

Regulating & supporting services		Provisioning services	Cultural	Biodiversity	
Flood attenuation	Sediment trapping & erosion Control	Water Quality Enhancement	Livelihood Support	Support	maintenance

Determination of Resource Quality Objectives in the Olifants Water Management Area	Resource Unit
(WMA4) - WP10536	Prioritisation Report

Moderate	Moderate	Low	Low (High)	Low	Low (High)

The flood attenuation and sediment retention function of wetlands is generally regarded as moderately important in this IUA.

Much of the catchment remains untransformed with only localised water quality concerns. Mapped wetlands are typically not associated with areas of water quality concerns. As such, water quality enhancement functions provided by wetlands in this catchment are generally regarded as low.

The importance of wetlands in maintaining livelihood support and promoting cultural services was rated as extremely limited based on the desktop assessment. A number of wetlands are used extensively for subsistence purposes however, suggesting that some wetland areas provide an important livelihood support function.

Wetlands are generally regarded as being of low ecological importance in this catchment. A large wetland in the upper catchment has however been flagged as being of high ecological concern.

Focus of wetland selection

The extent of wetlands in this catchment is limited. Ecosystem goods and services values are also regarded as low with few wetlands flagged as playing an important functional role. A single wetland along the lower reaches of the Ohrigstad River has been prioritised as an indicator wetland where a balance between maintenance of regulating and supporting services and subsistence use has been flagged as important. An additional wetland flagged as being of high ecological concern has also been selected for RQO determination in the upper catchment of this IUA.

Selected wetlands

The location of wetlands selected for RQO determination in this IUA is indicated in Figure 44 whilst details of each of the selected wetlands is included in Table 26.

Figure 44: Map showing the location of prioritised wetlands for RQO determination in IUA9.

Wetland	Motivation
9.1 Krankloofspruit	This is an unusually large unchannelled valley bottom wetland is located in the
tributary	upper reaches of this IUA. Despite significant impacts, the wetland was to
	ameliorate impacts from agricultural activities.
9.2 Ohrigstad wetland	While identified as a wetland FEPA, this floodplain system has been heavily
	degraded by subsistence cultivation. Few wetlands are located in this IUA
	however, and given the anticipated water quality impacts associated with
	agricultural use upstream, this wetland was prioritized for water quality
	enhancement.

Table 26:	Motivation	for wetlands	selected	in IUA9.
-----------	------------	--------------	----------	----------

4.2.4.10 IUA 10: Lower Olifants

Overview of water resources in the IUA

The main stem Olifants is presently in a D category with the lower Blyde and Mohlapitse in a B. The impacts on the Olifants are from irrigation along the river and the Flag Boshielo Dam. While wetlands are very limited in extent, most wetlands are regarded as being in very poor condition (typically linked to poor river condition) (Figure 45). Mapped good condition wetlands are associated with the Mohlapitse River.

Figure 45: Wetland types and consolidated PES data for IUA 10.

Goods and services	provided by	v wetlands
Coous and Scivices	provided b	wellands

Regulating & supporting services		Provisioning services	Cultural	Biodiversity	
Flood attenuation	Sediment trapping & erosion Control	Water Quality Enhancement	Livelihood Support	Support	maintenance
Moderate	Moderate	Low	Low	Low	Low

The flood attenuation and sediment retention functions of wetlands are generally regarded as moderately important in this IUA.

While there is a demand for water quality enhancement, wetlands present in the IUA are typically poorly suited to provide this service. As such, the importance of wetlands in improving water quality is regarded as low in this IUA.

While some protected areas occur in the catchment, these contain few wetlands. As such, the value of wetlands in providing cultural support (recreation and tourism) is regarded as low.

Wetlands are generally regarded as being of low ecological importance in this catchment.

Focus of wetland selection

The extent of wetlands in this catchment is limited. Ecosystem goods and services values are also regarded as low and as such, *no wetlands have been selected in this IUA*.

Selected wetlands

No wetlands were prioritized for RQO determination in this IUA.

4.2.4.11 IUA 11: Ga-Selati River area

Overview of water resources in the IUA

The present state of the Ga-Selati River ranges from a C (in the upper reaches) to an E category just before the confluence with the Olifants. This is mainly due to the impacts from mining and town development in the lower reaches. The extent of wetlands in this IUA is extremely limited with most wetlands regarded as being highly impacted (Figure 46).

Figure 46: Wetland types and consolidated PES data for IUA 11.

Regulating & supporting services		Provisioning services	Cultural	Biodiversity	
Flood attenuation	Sediment trapping & erosion Control	Water Quality Enhancement	Livelihood Support	Support	maintenance
Low	Moderate	Low - Moderate	Low - Moderate	Low	Low

Goods and services provided by wetlands

The flood attenuation functions of wetlands is generally regarded as low while that for sediment retention is regarded as moderately important in this IUA.

There are unacceptable phosphate concentrations in the Selati. These are associated with irrigation return flows and effluents from the mining and industrial activities around Phalaborwa (DWA, 2012). Serious water quality problems have also been identified along the lower reaches of this IUA (associated with Foskor Mine). Wetlands are typically not well suited to provide this service however and therefore score low from a water quality enhancement perspective.

The ecological importance of wetlands and associated biodiversity maintenance values are generally regarded as low in this IUA.

Focus of wetland selection

The extent of wetlands in this catchment is limited. Ecosystem goods and services values are also regarded as low and as such, *no wetlands have been selected in this IUA*.

Selected wetlands

No wetlands were prioritized for RQO determination in this IUA.

4.2.4.12 IUA 12: Lower Olifants within the Kruger National Park

Overview of water resources in the IUA

The water resources of this IUA all flow into and through the Kruger National Park and surrounding protected areas. The ecological importance is thus very high. However, the present state is in a C category which is mainly due to the impacts of the upstream developments on the Olifants River Figure 47).

Figure 47: Wetland types and consolidated PES data for IUA 12.

Regulating & supporting services			Provisioning services	Cultural	Biodiversity
Flood attenuation	Sediment trapping & erosion Control	Water Quality Enhancement	Livelihood Support	Support	maintenance
Low	Low	Low	Low	Moderate	Moderate (High along Olifants)

Goods and services provided by wetlands

The flood attenuation and sediment retention functions of wetlands are generally regarded as being of low importance in this IUA.

There are unacceptable phosphate concentrations in the lower Olifants below the Selati Confluence. These are associated with irrigation return flows and effluents from the mining and industrial activities around Phalaborwa (DWA, 2012). Wetlands along this river are however not well suited for water quality enhancement. Wetlands were generally rated as having low water quality enhancement functions.

The Olifants and Timbivati Rivers flow into the Kruger National Park at the lower reaches of this IUA. Although limited in extent, wetlands do contribute towards tourism value of these areas. Cultural values supplied by wetlands are regarded as moderately important in this IUA.

While many wetlands were rated as having a low ecological importance, some wetlands, particularly riparian areas associated with the Olifants River have been highlighted as having a high importance.

Focus of wetland selection

The extent of wetlands in this catchment is limited. Ecosystem goods and services values are also regarded as low. Riparian fringe wetlands highlighted as most important from an ecological perspective are better catered for through RQOs for the river resource. As such, *no wetlands were selected in this IUA*.

Selected wetlands

No wetlands were prioritized for RQO determination in this IUA.

4.2.4.13 IUA 13: Blyde catchment area

Overview of water resources in the IUA

Despite large areas of plantations in the upper catchment, agricultural and urban land use impacts are limited. In response, the Treur and upper Blyde rivers are currently in good condition. Wetlands are very limited in

Determination of Resource Quality Objectives in the Olifants Water Management Area	Resource Unit
(WMA4) - WP10536	Prioritisation Report

extent and are confined largely to the upper catchment area within forestry estates. Wetlands are regarded as being largely intact although degradation of some wetlands has been highlighted (Figure 48).

Figure 48: Wetland types and consolidated PES data for IUA 13.

Regulating & su	pporting services		Provisioning services	Cultural	Biodiversity	
Flood attenuation	Sediment trapping & erosion Control	Water Quality Enhancement	Livelihood Support	Support maintenance		
Moderate	Moderate	Low	Low - Moderate	Low - Moderate	Moderate (High in Upper Catchment)	

Goods and services provided by wetlands

The flood attenuation and sediment retention functions of wetlands are generally regarded as moderately important in this IUA.

Wetlands are typically located in areas with low water quality impacts. The importance of wetlands in providing this service is therefore generally regarded as of low importance.

Based on climatic conditions, demographics and settlement patterns, provisioning services provided by wetlands are likely to be low - moderately important across much of this catchment.

A large number of protected areas are present in this IUA. Wetlands occurring in the Motlotse Canyon Provincial Nature Reserve are likely to contribute to the attraction of this protected area. The contribution of wetlands is regarded as moderately important for tourism and recreational purposes.

Wetlands in the upper catchment have been flagged as having a high ecological importance and sensitivity. These wetlands are located near the catchment divide with limited threats.

Focus of wetland selection

The extent of wetlands in this catchment is limited. Ecosystem goods and services values are also regarded as low. While wetlands with high biodiversity value are present in the upper catchment, these fall primarily within the Motlotse Canyon Provincial Nature Reserve and are not likely to be subject to any threats. *A single wetland has however been selected based on the presence of important biodiversity attributes.*

Selected wetlands

The location of the wetland selected for RQO determination in this IUA is indicated in Figure 49 whilst details of each of the selected wetlands is included in Table 27.

Figure 49: Map showing the location of the wetland selected for RQO determination in IUA13.

Wetland	Motivation
13.1 Treur wetland	This is an important peatland system. The associated river supports the endemic
	Treur River Barb (Barbus treurensis) which has an extremely limited distribution.
	The wetland and associated biota are threatened by existing forestry & proposed
	future mining activities.

Determination of Resource Quality Objectives in the Olifants Water Management Area	Resource Unit
(WMA4) - WP10536	Prioritisation Report

4.3 PRIORITY DAM ECOSYSTEMS FOR THE OLIFANTS WMA

The application of the methodology resulted in the selection of 23 priority dams for the Olifants catchment. The final selected priority dams are presented in Table 28 below.

IUA	Resource Unit	Dam Name	Quaternary	Dam number	River	Year Established	FSC (Mm³)	Purpose
1	9	Witbank	B11G	B1R001	Olifants	1971	104.0	Domestic (urban), industrial use
	9	Doornpoort	B11J	-	Olifants	1925	9.2	Recreation, domestic (urban)
	18	Middelburg	B12C	B1R002	Klein Olifants	1978	48.4	Domestic (urban), industrial
	24	Bronkorstspruit	B20C	B2R001	Bronkhorstspruit	1950	57.9	Industrial, domestic (urban)
2	27	Wilge Dam (Premier Mine)	B20F	-	Wilge	1909	1.7	Domestic (urban), industrial, mining
3	37	Loskop	B32A	B3R002	Olifants	1939	374.3	Irrigation, domestic (rural), recreation
	38	Roodepoort	B32B	B3R004	Selons	1968	1.8	Irrigation
	41	Rust De Winter	B31C	B3R001	Elands	1934	27.2	Irrigation
4	45	Mkhombo/ Weltevreden Weir	B31F	B3R005	Elands	1980	205.8	Domestic (urban & rural), industrial, irrigation
	48	Rooikraal	B32F	B3R003	Bloed	1921	2.1	Irrigation
5	52	Flag Boshielo	B51B	B5R002	Olifants	1987	103.0	Irrigation, industrial, domestic (urban & rural)
	54	Belfast	B41A	-	Langspruit	1973	4.4	Domestic (urban)
	56	Tonteldoos	B41C	B4R001	Tonteldoos	1954	0.6	Irrigation
	56	Vlugkraal	B41C	B4R002	Vlugkraal	1959	0.4	Irrigation
6	62	Der Bruchen	B41G	-	Groot Dwars	1989	7.3	Irrigation, mining
	64	De Hoop	B41H	B4R007	Steelpoort	2012	347.4	Domestic (urban & rural), mining, industrial
8	74	Lydenburg Dam	B42B	-	Sterk	1977	1.1	Domestic (urban), industrial
	79	Buffelskloof	B42F	B4R004	Watervals	1972	5.4	Irrigation
9	83	Ohrigstad Dam	B60E	B6R001	Ohrigstad	1955	14.4	Irrigation
10	88	Blyderivierpoort	B60D	B6R003	Blyde	1974	56.5	Irrigation, domestic (urban),

Table 28: Final selected priority dams for the Olifants WMA

Determination of Resource Quality Objectives in the Olifants Water Management Area	Resource Unit
(WMA4) - WP10536	Prioritisation Report

IUA	Resource Unit	Dam Name	Quaternary	Dam number	River	Year Established	FSC (Mm³)	Purpose
								recreation
11	99	Tours	B72E	B7R003	Ngwabitsi	1988	5.5	Domestic
12	114	Phalaborwa Barrage	B72D	B7R002	Olifants	1966	5.7	Domestic (urban), industrial
	106	Klaserie	B73A	B7R001	Klaserie	1959	5.8	Irrigation

Figure 50: Prioritised dam ecosystems selected for the Resource Quality Objectives determination study through the Resource Unit Prioritisation process.

Determination of Resource Quality Objectives in the Olifants Water Management Area	Resource Unit
(WMA4) - WP10536	Prioritisation Report

4.4 PRIORITY GROUNDWATER RESOURCE UNITS AND ECOSYSTEMS FOR THE OLIFANTS WMA

One of the most important findings to highlight was the fact that a lot of intimate knowledge about the areas represented by the RUs resides with the public. The available datasets however fail to address some of the critical issues in certain areas and this highlights the importance of the public participation process. Although public participation can address gaps in the data, it can also skew the prioritisation process if not all areas are equally represented.

The final results of the prioritisation tool are shown in Figure 51.

Figure 51: Olifants groundwater RU prioritization outcomes.

Due to the large number of groundwater resources units that were prioritised, stakeholders (regulators) promoted a cut-off point of 30 resource units which were then assessed for RQO determination. The top 30 priority groundwater resources units are shown in Figure 52.

Figure 52: Top 30 groundwater resource units selected for the determination of Ground Water Resource Quality Objectives in the study.

Determination of Resource Quality Objectives in the Olifants Water Management Area	Resource Unit
(WMA4) - WP10536	Prioritisation Report

4.5 STAKEHOLDERS COMMENT MANAGEMENT

Participants at the Olifants WMA Resource Unit Prioritisation workshop held on the 29th to the 31st of July 2013 were invited to evaluate the workshop by completing a workshop evaluation questionnaire (APPENDIX F). The questions were structured to assess five areas namely:

- The purpose of the workshop,
- The participation level,
- The availability of information,
- The timing or scheduling of activities within the workshop and
- The facilitation of the workshop.

In total 23 evaluation sheets were received which is summarised below with questions and analysis of the responses.

4.5.1 THE PURPOSE OF THE WORKSHOP

Do you feel that the workshop achieved the stated objectives?

In response to the above question, a significant proportion (78%) of respondents found that the workshop had achieved its stated objectives and the remaining 22% felt it only partially achieved its objectives. The reasons stated for this is that some participants felt that the wetland and dam presentations were not due for release yet i.e. premature release of information which needed to be supplemented. Another respondent found that the pace was too fast as they were not a professional in the field.

4.5.2 THE PARTICIPATION LEVEL

Were you able to contribute meaningfully?

When asked whether they were able to make a meaningful contribution towards the prioritisation of resource units, 65 % of participants stated that they had. An equal number (13 %) of participants responded that they were not fully able to contribute. The other 13 % responded that they weren't able to able to contribute at all.

Two Null responses were received from two respondents who did not submit an answer in the provided fields. One of the afore mentioned respondents was new to the system and felt that (s)he could not make a meaningful contribution. The second respondent in the "Null" response category indicated that his/her contributions were limited to the Upper Vaal and this was a restriction to their contribution in the workshop. Other respondents added that they prefer to have received background information prior to the workshop.

4.5.3 THE AVAILABILITY OF INFORMATION

Were you provided with sufficient information?

The large majority (78%) of respondents agreed that they had received sufficient information to prioritise resource units. Seventeen percent (17%) of respondents only partially agreed while 1 respondent (4%) provide a Null response.

Some participants indicated that there were gaps in the provided information by marking the "Partially" field in the evaluation form. Reasons for this response are shown by two respondents. One respondent felt that the cultural information was not considered as highly as other sub-criteria. Another stated that during the workshop sufficient information was provided, but prior to the workshop (s)he would have like some information.

4.5.4 THE TIMING OR SCHEDULING OF ACTIVITIES WITHIN THE WORKSHOP

Were you provided with sufficient time to contribute to the process?

Most respondents (91%) indicated that they were afforded sufficient time to contribute to the process. One respondent (4%) was not fully satisfied with the allocated time for stakeholder input and another respondent (4%) did not answer the question.

Was the length of the workshop adequate?

When asked about the duration of the workshop, 87 % of respondents indicated that they found the length of the workshop to be adequate. One (4 %) respondent indicated that (s)he found that the workshop was too long. Two responses (8%) were classified in the "Null" category. One belongs to a respondent who ticked two boxes and the other to a respondent who did not answer the question.

4.5.5 THE FACILITATION OF THE WORKSHOP

Was the workshop facilitation adequate?

Almost all (96%) of the respondents indicated that they found the workshop facilitation adequate with 1 null response (4%) from a respondent that did not answer the question.

Specific issues and comments highlighted by workshop participants are documented in Table 29.

Table 29: Comments on workshop process by workshop participants who attended the Olifants RQO prioritisation workshop from 29 – 31 July 2013.

No	Comment	Commentator
1	Thank you for the workshop. The department should bring the monitoring data from in house monitoring programmes and mining (external) programme to facilitate decisions and validate models.	Respondent 1
2	Draft report to please be circulated timeously for comments (and review).	Teboho Motinyane
4	The groundwater component of the study should be beefed up. Information should be groundtruthed as there is recent reliable data on the ground.	Respondent 4
5	The inclusion of AMD and climate change effects on the water resource, especially on river ecosystems. I believe they have impacts and therefore should also be included or made provisions for.	Respondent 5
7	Generally very satisfactory. More consideration /refinement of lakes and to a lesser extent wetlands. Groundwater approaches would be welcome.	Respondent 7
9	Workshop was very informative and I learned a lot from it. I am pleased with the outcome.	Respondent 9
10	This workshop needs to be include the community members as they are the users of the RQOs at large because what we are doing is for them, they therefore need to be effectively included in the participation process.	Respondent 10
12	This workshop needs to be spread to cover local communities who are at the receiving end of the process.	Respondent 12
19	Please check that the Olifants River Forfum (ORF) is part of your I &AP list. I am aware of a number of regular participants that were part of the OR Water Classification System in 2011/12 that did not get either the initial invitation or agenda. Please check future correspondence to include these people for the rest of this process. Thank you.	Respondent 19
20	 Liked the methodology and sequential presentation leading to the conclusion. Lack of data for groundwater was frustrating. 	Respondent 20
22	Purpose of the workshop cannot be establish which pans/wetlands to conserve but rather to identify highly significant areas which should have "protection rights" and strenuous RQOs.	Respondent 22

5 LIMITATIONS AND UNCERTAINTIES

SOME OF THE KEY LIMITATIONS WHICH MAY INFLUENCE THE CONFIDENCE OF THE OUTCOMES OF THE RESOURCE UNIT AND ECOSYSTEM PRIORITISATION PROCESS WHICH SHOULD BE CONSIDERED WHEN IMPLEMENTING THESE PRIORITY RUS AND ECOSYSTEMS INCLUDE:

5.1 RIVERS

- Quantitate data availability was limited which necessitated the use of qualitative data and specialist solicitations. This limitation was particularly evident in the moderately to minimally impacted areas of the Water Management Area. Through the implementation of RQOs real data would be generated to evaluate the accuracy of RU prioritisation process.
- Stakeholder representation of some IUAs (particularly IUAs 4, 5 and 7) were limited which may have resulted in these areas being neglected during the prioritisation process.
- The requisite simplicity principal was adopted in the study to prioritise RUs. In addition, stakeholders
 considered the capacity and resource availability of the regional regulators to prioritise RUs for RQO
 determination. These may result in the prioritisation of insufficient RUs for RQO determination which
 may inadequately address the protection requirement of the vision of the RQO determination process
 (available from the WRC study).

5.2 WETLANDS

- It should be noted that available datasets used, were either datasets generated at a national scale or surrogate datasets. Therefore, the prioritisation of wetlands is based on broad scale datasets.
- The number of specialist / stakeholders who were able to attend the final stakeholder / specialist workshops.
- The requisite simplicity principal was adopted in the study to prioritise wetlands. In addition, stakeholders considered the capacity and resource availability of the regional regulators to prioritise wetlands for RQO determination. These may result in the prioritisation of insufficient RUs for RQO determination which may inadequately address the protection requirement of the vision of the RQO determination process (available from the WRC study).

5.3 DAMS

- Quantitate data availability was limited which necessitated the use of qualitative data and specialist solicitations. This limitation was particularly evident in the moderately to minimally impacted areas of the Water Management Area. Through the implementation of RQOs real data would be generated to evaluate the accuracy of RU prioritisation process.
- Stakeholder representation of some IUAs (particularly IUAs 4, 5 and 7) were limited which may have resulted in these areas being neglected during the prioritisation process.

5.4 GROUNDWATER

 Quantitate data availability was limited which necessitated the use of qualitative data and specialist solicitations. This limitation was particularly evident in the moderately to minimally impacted areas of the Water Management Area. Through the implementation of RQOs real data would be generated to evaluate the accuracy of RU prioritisation process.

- Stakeholder representation of some IUAs (particularly IUAs 4, 5 and 7) were limited which may have resulted in these areas being neglected during the prioritisation process.
- The requisite simplicity principal was adopted in the study to prioritise groundwater RUs. In addition, stakeholders considered the capacity and resource availability of the regional regulators to prioritise groundwater RUs for RQO determination. These may result in the prioritisation of insufficient RUs for RQO determination which may inadequately address the protection requirement of the vision of the RQO determination process (available from the WRC study).

6 WAY FORWARD

Step 4 of the RQO methodology entails prioritising sub-components for RQO determination and the selection of indicators for monitoring. Each of the prioritised Resource Units (detailed in this report) will therefore by subjected to more detailed analyses to identify which sub-components present in these Resource Units should be protected in order to support water resource dependent activities and/or maintain the integrity and ecological functioning of the water resource. This information is then used to prioritise sub-components for RQO determination.

Wetlands were prioritized for RQO determination through a systematic desktop GIS process and supplemented with priorities identified by key local stakeholders. A final subset of wetlands was then selected at a focussed stakeholder meeting based on their importance for biodiversity conservation and / or their functional importance. The focus during subsequent steps will be to select sub-components and indicators for RQO determination for these prioritised wetlands. Regional-level RQOs will also be developed to cater for the plethora of other wetland ecosystems not catered for through this resource unit based approach.

Determination of Resource Quality Objectives in the Olifants Water Management Area	Resource Unit
(WMA4) - WP10536	Prioritisation Report

7 ACKNOWLEDGEMENTS

We would like to acknowledge the contributions made by the stakeholders of the Olifants Water Management Area who participated in the stakeholder workshop to the RQO determination process. The information and direction provided by these stakeholders has made a noticeable contribution to the study. In addition we acknowledge the contributions made by scientists and consultants who provided information to the study team.

8 REFERENCES

CSIR. 2011. National Freshwater Ecosystem Priority Areas (NFEPA) Project. NFEPA Wetland Layer. GIS Coverage. Council for Scientific and Industrial Research, Pretoria, South Africa.

DWA (Department of Water Affairs), 2011. Procedures to Develop and Implement Resource Quality Objectives. Department of Water Affairs, Pretoria, South Africa

- Department of Water Affairs (DWA). 2012a. Determination of Resource Quality Objectives in the Olifants Water Management Area (WMA4): INCEPTION REPORT. Report No.: RDM/WMA04/00/CON/RQO/0112. Chief Directorate: Water Ecosystems: Compliance. Study No.: WP10536. Prepared by the Institute of Natural Resources (INR) NPC. INR Technical Report No.: INR 492/14 (i). Pietermaritzburg, South Africa
- Department of Water Affairs (DWA). 2012b. Determination of Resource Quality Objectives in the Olifants Water Management Area (WMA4): GAP ANALYSIS REPORT. Report No.: RDM/WMA04/00/CON/RQO/0212.
 Chief Directorate: Water Ecosystems: Compliance. Study No.: WP10536. Prepared by the Institute of Natural Resources (INR) NPC. INR Technical Report No.: INR 492/14 (ii). Pietermaritzburg, South Africa.
- Department of Water Affairs (DWA). 2013a. Determination of Resource Quality Objectives in the Olifants Water Management Area (WMA4): RESOURCE UNIT DELINEATION REPORT. Report No.: RDM/WMA04/00/CON/RQO/0113. Chief Directorate: Water Ecosystems: Compliance. Study No.: WP10536. Prepared by the Institute of Natural Resources (INR) NPC. INR Technical Report No.: INR 492/14 (iii). Pietermaritzburg, South Africa.
- Department of Water Affairs (DWA). 2013b. Determination of Resource Quality Objectives in the Olifants Water Management Area (WMA4): RESOURCE UNIT PRIORITISATION REPORT. Report No.: RDM/WMA04/00/CON/RQO/0213. Chief Directorate: Water Ecosystems: Compliance. Study No.: WP10536. Prepared by the Institute of Natural Resources (INR) NPC. INR Technical Report No.: INR 492/14 (iv). Pietermaritzburg, South Africa.
- Department of Water Affairs, South Africa, January 2013. Classification of Significant Water
- Resources in the Olifants Water Management Area (WMA 4): Management Classes of the Olifants

WMA. Report No: RDM/WMA04/00/CON/CLA/0113

- Department of Water and Sanitation (DWS). 2014a. Determination of Resource Quality Objectives in the Olifants Water Management Area (WMA4): SUB-COMPONENT PRIORITISATION AND INDICATOR SELECTION REPORT. Report No.: RDM/WMA04/00/CON/RQO/0114. Chief Directorate: Water Ecosystems: Compliance. Study No.: WP10536. Prepared by the Institute of Natural Resources (INR) NPC. INR Technical Report No.: INR 492/14 (v). Pietermaritzburg, South Africa.
- Department of Water and Sanitation (DWS). 2014b. Determination of Resource Quality Objectives in the Olifants Water Management Area (WMA4): RESOURCE QUALITY OBJECTIVES AND NUMERICAL LIMITS REPORT. Report No.: RDM/WMA04/00/CON/RQO/0214. Chief Directorate: Water Ecosystems: Compliance. Study No.: WP10536. Prepared by the Institute of Natural Resources (INR) NPC. INR Technical Report No.: INR 492/14 (vi). Pietermaritzburg, South Africa
- DWAF (Department of Water Affairs and Forestry), 2007. Upper Olifants River Catchment Framework Management Strategy. Directorate: Water Abstraction and In-stream Use, Sub-directorate: Environment and Recreation. Pretoria.
- Department of Water Affairs, South Africa (DWA) (2013a) Classification of Significant Water Resources in the Olifants Water Management Area (WMA 4): Management Classes of the Olifants WMA. Report No: RDM/WMA04/00/CON/CLA/0113

Exigent Engineering Consultants, 2006. An inventory of wetlands in the Upper Olifants catchment.

- IWMI (International Water Management Institute), 2011. Wet-Win Project. Reported in a Special issue of Environmental Science & Policy, 34: 1-146, 2013.
- Kleynhans, C.J., 2013. Preliminary PES/EIS Assessment of river ecosystems. Unpublished draft spreadsheets for the Olifants catchment. Department of Water Affairs, Pretoria.
- Kotze, D.C., Marnewick, G.C., Batchelor, A.L., Lindley, D.S. and Collins, N.B. 2007. WET-Ecoservices: A technique for rapidly assessing ecosystem services supplied by wetlands. WRC Report No TT 339/08,Water Research Commission, Pretoria.
- Macfarlane, D.M. and Teixeira-Leite, A. (2012). Strategic Management Plan: Verloren Valei Nature Reserve. Version 1.0. Report prepared for the Department of Environmental Affairs.

- Murray R, Baker K, Ravenscroft P, Musekiwa C and Dennis R (2011) A Groundwater Planning Toolkit for the Main Karoo Basin: Identifying and quantifying groundwater development options incorporating the concept of wellfield yields and aquifer firm yields. WRC Report No: 1763/1/11 Water Research Commission, Pretoria.
- Palmer, R.W., Turpie, J., Marneweck, G.C. & Batchelor, A.L. 2002. Ecological and economic evaluation of wetlands in the Upper Olifants River catchment, South Africa. WRC Report no. 1162/1/02.

9 APPENDICES

9.1 Appendix A: Summary of the Data Used to Score the Desktop Application of the RU Prioritisation Tool for Rivers in the Study.

Appendix A1: Summary of the data and associated processing methods used to score each criterion and subcriterion in the RUPT for rivers in the study.

1. Position of the Resource Unit within the IUA

a. Location of the Resource Unit

Resource Units on large mainstem rivers at the downstream end of the IUAs are located at the edge of socioeconomic zones where user requirements are likely to differ. Such Resource Units also aggregate the upstream impacts from the entire IUA and thus enable the assessment of management performance at meeting objectives for the upstream catchment.

The Olifants WMA contains a total of thirteen IUAs. The following Resource Units are located at the base of each of the IUAs and have therefore been assigned a score of 1. The remainder of the Resource Units were scored as 0.

IUA number	Associated RU at the base of the IUA
1	RU 13
2	RU 31
3	RU 40
4	RU 46
5	RU 53
6	RU 66
7	RU 72
8	RU 82
9	RU 86
10	RU 98
11	RU 104
12	RU 116
13	RU 121

2. Importance to users

a. Presence of cultural services

Cultural services are defined as the non-material benefits that people obtain from contact with ecosystems. They include recreational, aesthetic and spiritual benefits (TEEB, 2010). Resource Units which provide these benefits should be protected as they contribute to the wellbeing of society.

The Water Resource Classification identified and valued the following cultural services per sub-area of the Olifants WMA:

- value of river based adventure tourism
- value of recreational angling
- ecotourism value
- property values
- scientific and educational value.

	Upper	Middle	Steelpoort	Lower	Total
Tourism	37.4	38.4	38.8	249.6	364.2
Recreation	5.1	5.3	5.3	34.3	50.1
Aesthetic value	0	0	0	5.7	5.7
Education	0.1	0.2	0.1	0.1	0.5
Total	42.65	43.88	44.24	289.75	420.52

These values were generated per sub-area of the Oilfants WMA and were aggregated within four categories namely tourism, recreation, aesthetic value and education.

These values were then converted into percentages relative to one another. Thus all Resource Units in the Lower sub-area were assigned 100%, while relative percentages for Resource Units in Upper, Middle and Steelpoort sub-areas were calculated as 14.72%, 15.14% and 15.27% respectively. These percentages were then converted into three classes namely 0-33%, 34-66% and 67-100% and scored as 0, 0.5 and 1 respectively within the Resource Unit prioritisation tool. Thus all Resource Units located in the Lower sub-area were scored as 1 while the remainder were scored as 0.

b. Presence of significant vulnerable communities

Many poor communities are directly reliant on water resources for domestic water use, food, grazing, medicine, and building materials. Rivers provide an important source of water for many vulnerable communities in the Olifants Water Management Area. The Census 2011 data identifies the source of water for households across the country and classifies the source according to 11 categories. Two of these categories, namely dam/pool/stagnant water and rivers/streams have been used to identify the location of vulnerable communities who are dependent on natural surface water resources in the Olifants Water Management Area.

All categories provided in Statistics South Africa 2011 Census data	Categories used as indicators of vulnerable communities
Piped water inside dwelling	Dam/pool/stagnant water
Piper water inside yard	River/stream
Piped water on community stand: distance less than 200m from dwelling	
Piped water on community stand: distance greater than 200m from dwelling	
Borehole	
Spring	
Rain-water tank	
Dam/pool/stagnant water	
River/stream	
Water vendor	
Other	

The number of households within each of the selected categories was calculated per ward. Households were assumed to be uniformly distributed across each ward. Where a ward was located across two Resource Units, an area percentage was used to calculate the number of households within the portion of the ward occurring in each Resource Unit. The total number of households for all wards occurring within a Resource Unit was then summed to give an indication of the total number of households dependent on natural surface water resources within each Resource Unit.

In order to identify Resource Units which include more vulnerable communities than another, quantiles were used. This method divides the total number of Resource Units into three equal categories. All Resource Units

Determination of Resource Quality Objectives in the Olifants Water Management Area	Resource Unit
(WMA4) - WP10536	Prioritisation Report

occurring in the category with the highest number of vulnerable households were scored as a 1, while all Resource Units falling into the middle category were scored as 0.5. All Resource Units falling into the category containing the least number of vulnerable households were scored as 0.

The WRC study also valued harvested natural products obtained from river ecosystems in the Olifants WMA. This data is presented at sub-area scale as follows:

	Upper	Middle	Steelpoort	Lower	Total
Harvested products	11	28.2	10.2	17.5	66.9

These values were then converted into percentages relative to one another. Thus all Resource Units in the Middle sub-area were assigned 100%, while relative percentages for Resource Units in Upper, Steelpoort and Lower sub-areas were calculated as 39.01%, 36.17% and 62.06% respectively. These percentages were then converted into three classes namely 0-33%, 34-66% and 67-100% and scored as 0, 0.5 and 1 respectively.

The scores for both the dependence on natural water sources as well as the use of harvestable natural products were then compared. The highest score for either of these sub-criteria was then used to denote the importance of the Resource Unit for vulnerable communities. This score was included in the RUPT.

c. Use in meeting strategic requirements

Strategic water requirements in the Olifants WMA refer to are those reserved for Eskom for power generation. The Reconciliation Strategy delineates the Olifants into three socio-economic zones namely the Upper, Middle and Lower Olifants. Power stations located in the Upper Olifants zone utilise 228 million m3/a for cooling purposes, from the upper Komati or the Vaal Systems. No strategic requirements have been identified in the middle and lower zones. All Resource Units in the Upper Zone were therefore considered to play an important role in meeting strategic requirements and were scored 1 while the remainder of Resource Units were deemed to be of little importance in meeting strategic requirements and were scored 0.

d. Presence of important regulating and supporting services

The Economics of Ecosystems and Biodiversity (TEEB) assessment identifies a number of important regulating and supporting services. Regulating services are the services that ecosystems provide by acting as regulators e.g. regulating the quality of air and soil or by providing flood and disease control. Habitat or Supporting services underpin almost all other services. These services acknowledge that ecosystems provide living spaces for plants or animals and also maintain a diversity of different breeds of plants and animals.

Turpie et al. (2010) undertook a study to determine the nature, distribution and value of aquatic ecosystem services in the Oilfants, Inkomati, and Usutu to Mhlatuze WMAs. This study identified and valued a number of important regulating and supporting services supplied by riverine and wetland ecosystems in the study area. The services particularly relevant to riverine ecosystems include water treatment, water regulation and carbon sequestration. The values for water regulation and carbon sequestration have also been adjusted and included in the Water Resource Classification study. The estimated total value of the water purification service of rivers by sub-area (as given by Turpie et al. 2010) as well as the values for the water regulation and carbon sequestration (as adjusted for in the Water Resource Classification study) are included in the table below.

			R million		
	Upper	Middle	Steelpoort	Lower	Total
Water treatment function	8.5	1.9	1.4	8.2	20
Water regulation	4.5	3.1	1.4	3.8	12.8
Carbon sequestration	0.1	1	0.2	1.4	2.7

These values were then converted into percentages relative to one another for each service. Thus, for water treatment all Resource Units in the Upper sub-area were assigned 100%, while relative percentages for

Resource Units in Middle, Steelpoort and Lower sub-areas were calculated as 22.35%, 16.47% and 96.47% respectively. The same approach was used for the water regulation and carbon sequestration functions.

These percentages were then converted into three classes namely 0-33%, 34-66% and 67-100% and scored as 0, 0.5 and 1 respectively. All three resulting scores were then compared and the highest score for any of the sub-criteria was used to denote the importance of the Resource Unit for providing regulating and supporting services. This score was included in the Resource Unit prioritisation tool.

e. Presence of activities supporting the economy

Major economic sectors which depend directly on water resources in the Olifants WMA include agriculture, mining and manufacturing. Each of these sectors was considered in the prioritisation process and scored separately. The contribution of agriculture to the GDP in each IUA was calculated as part of the Water Resource Classification for this WMA. This information was converted to a relative score for inclusion in the prioritisation tool. Unfortunately this data was only available at an IUA level and thus all Resource Units contained in the respective IUA were scored the same. Resource Units which contributed less than 33% to the highest contributor were scored as 0; Resource Units which contributed between 33% and 66% relative to highest contributor were scored as 1. The same scoring system was applied to the assessment of mining. These scores were assigned by the socio-economic team responsible for undertaking the Water Resource Classification for the WMA. The maximum score of any of these activities was included as the final score for this criterion in the Resource Unit prioritisation tool.

IUA number	Agric	ulture	Coal	PGM	Copper				
	Contribution to GDP (R'million)	Resulting score	Scores assigned by the socio-economic specialists of the WRC						
1	46	0	1	0	0				
2	77	0	0.5	0	0				
3	15	0	0	0	0				
4	14	0	0	0	0				
5	457	1	0	0.5	0				
6	53	0	0	0 1					
7	73	0	0	0	0				
8	62	0	0	0	0				
9	79	0	0	0	0				
10	160	0.5	0	0	0				
11	83	0	0	0	1				
12	22	0	0	0	0				

3. Level of threat posed to users

The data used to assess the threat posed to users of the resource unit was sourced from Dr Neels Kleynhans at the DWA. This data forms part of the 2011/2012 desktop assessment of the PES/EIS of the WMA. For the purposes of the RUPT, three metrics were considered based on their potential to alter the in-stream condition of rivers within the resource unit. These included:

- Potential Instream Modification Activities
- Potential Flow Modification Activities
- Potential Physico-Chemical Modification Activities

Each of these metrics was scored as follows:

Threat description	Rating
None	0
Small	1
Moderate	2
Large	3
Serious	4
Critical	5

The maximum score from any of the three metrics was incorporated into the RUPT.

4. Ecological importance

a. Resource units with a high or very high EIS category

The Management Class report of the Water Resource Classification for the Olifants WMA details the categories for both the Ecological Importance and the Ecological Sensitivity of each biophysical node in the study area. However, for some biophysical nodes, these categories have been excluded in this report and thus the categories for these biophysical nodes detailed in the Ecologically Sustainable Base Configuration (ESBC) Scenario Report were used. The categories assigned to both the EI and ES range from "very high" to "very low". These categories were converted to scores for both EI and ES with "very high" assigned a score of 1, "high" assigned a score of 0.5 and the remainder of the categories scored as 0. The maximum score for either the EI or ES was used in scoring the respective Resource Units within the prioritisation tool.

b. Resource units which have an A/B NEC and / or PES

The Present Ecological State information contained in the Management Class report of the Water Resource Classification was used in the current prioritisation process. Similarly this report details the proposed ecological category for each biophysical node which must be met if the recommended Management Class is to be attained. In most cases, the Present Ecological State is recommended except where the PES is an E category. In such cases a D category has been proposed as an E category is considered unsustainable and cannot be recommended as an ecological condition. The ecological categories for both the PES and those proposed to meet the management class were interrogated to identify those which were currently or required to be in an A or B state. These categories were converted to a score with an A or A/B category scored as 1, a B category scored as 0.5 and the remainder of the categories scored as 0. Given that the PES has been used as the proposed ecological category for attaining the management class (with the exception of the lower categories) within the WRC, the scores for both the "NEC" and PES were the same. These scores were assigned to the respective Resource Units within the prioritisation tool.

c. Resource units identified as National Freshwater Ecosystem Priority Areas

The National Freshwater Ecosystem Priority Areas (NFEPA) project identifies a number of freshwater ecosystem priority areas necessary to meet national biodiversity goals for freshwater ecosystems. River FEPAs achieve biodiversity targets for river ecosystems and threatened/near-threatened fish species, and were identified in rivers that are currently in a good condition (A or B ecological category) (Nel et al., 2011). Resource Units which contained a FEPA were scored as 1 in the prioritisation tool. The NFEPA project also identified Phase 2 FEPAs. Phase 2 FEPAs are located in moderately modified (C) rivers and their condition should not be degraded further, as they may in future be considered for rehabilitation once good condition FEPAs (in an A or B ecological category) are considered fully rehabilitated (Nel et al., 2011). Resource Units containing a Phase 2 FEPA were scored as 0.5 in the prioritisation tool.

d. Resource units identified as a priority in provincial / fine scale aquatic biodiversity plans

Aquatic biodiversity plans have been developed for a number of provinces. However, these plans incorporate NFEPA data which has already been considered as a separate sub-criterion in the Resource Unit prioritisation

Determination of Resource Quality Objectives in the Olifants Water Management Area	Resource Unit
(WMA4) - WP10536	Prioritisation Report

tool. To avoid double accounting, these plans were excluded from the assessment. However, the presence of conservancies and both formally and informally protected areas was interrogated. The National Protected Areas coverage was overlaid with the study area in a GIS environment to identify the location of protected areas relative to each Resource Unit. Resource Units which contained a formally protected areas were scored as 1 while Resource Units which contained either an informally protected area or a conservancy were scored as 0.5. The maximum score for any Resource Unit was included in the prioritisation tool. The conservancies and protected areas considered during the assessment are detailed in the table below.

Conservancies	Formally protected areas	Informally protected areas
Balule	Bewaarkloof Nature Reserve	Andover Game Reserve
Bankenveld	Blyde River Nature Reserve	Ezemvelo Private Nature Reserve
De Berg Conservancy	Bronkhorstspruit Municipal Nature Reserve	Kapama/madrid Reserve
Kwena Basin	 Gustav Klingbiel Nature Reserve 	Klaserie Private Nature Reserve
Leutla	 Kruger National Park 	 Litsitsirupa Private Nature Reserve
Olifants Gorge	 Kwaggavoetpad Nature Reserve 	Mount Anderson Catchment Nature Reserve
Pau Rosa	 Leeuwfontein Provincial Nature Reserve 	Selati Game Reserve
Tonteldoos	 Legalameetse Nature Reserve 	Timbavati Game Reserve
	 Loskop Dam Nature Reserve 	
	Mdala Nature Reserve	
	Morgenzon	
	 Motlatse Canyon Provincial Nature Reserve 	
	 Ohrigstad Dam Nature Reserve 	
	Potlake,	
	 Schuinsdraai Nature Reserve 	
	Tweefontein	
	 Verloren Valei Nature Reserve 	
	Witbank Nature Reserve	
	 Wolkberg (serala) Wilderness Area 	
	 Wolkberg Caves Nature Reserve 	

5. Level of threat posed to ecological components of the resource unit

The same scores as those reflected under the "Level of threat posed to users" criterion were used for this criterion.

6. Management considerations

a. Resource Units with PES lower than a D category

The Resource Directed Measures Integrated Manual (1999) sets out a default rule which states that "the management class is determined in relation to the present state, but at a level which represents a goal of no further degradation for water resources which are largely modified, and at least a move toward improvement for water resources which are critically modified". Similarly, the National Water Resources Strategy (2002) states that "any water resource which demonstrates 'Unacceptable' conditions is deemed to be unsustainable. In these cases the management class will be determined as a minimum of 'Heavily used/impacted' (the lowest management class), and management will aim to rehabilitate the water resources to this state". In line with this thinking, the Water Resource Classification for the Olifants WMA considers that an E category is unsustainable and cannot be recommended as an ecological condition. This principle was also adopted in the RQO methodology. Consequently, any Resource Units with a PES lower than a D category must be prioritised for management action. Eight Resource Units in the Olifants WMA have a PES of an "E" and have therefore received a score of 1 in the prioritisation tool.

7. Practical considerations

a. Monitoring points

The Department of Water Affairs undertakes a number of national monitoring programmes including the National Chemical Monitoring Programme (NCMP), the National Microbiological Monitoring Programme (NMMP) and the River Health Programme (RHP). In addition, the Department has a number of routine water

quality monitoring sites and Ecological Water Requirement (EWR) sites. The location of these monitoring sites relative to each of the Resource Units was identified. Resource Units which contained either a EWR or RHP site were scored as 1 while those Resource Units which contained any other monitoring site received a score of 0.5. The maximum score assigned to each Resource Unit was included as the final score for this sub-criterion in the Resource Unit prioritisation tool.

b. Accessibility

No desktop data was available to score this sub-criterion and it was therefore excluded from the initial prioritisation process.

c. Safety risk

No desktop data was available to score this sub-criterion and it was therefore excluded from the initial prioritisation process.

9.2 APPENDIX A2: RU SCORES FOR EACH CRITERION AND SUB-CRITERION APPLIED IN THE DESKTOP APPLICATION OF THE RUPT FOR RIVERS IN THE STUDY.

RESOURCE UN	IIT PRIORITISATION TOOL																				
Criterion	Sub-criteria	RU 1	RU 2	RU 3	RU 4	RU 5	RU 6	RU 7	RU 8	RU 9	RU 10	RU 11	RU 12	RU 13	RU 14	RU 15	RU 16	RU 17	RU 18	RU 19	RU 20
Position of resource unit within IUA		0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	Cultural services	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Presence of significant vulnerable communities	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Importance for users (Current & anticipated future use)	Use in meeting strategic requirements and international obligations	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1
·····,	Presence of supporting and regulating services	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1
	Presence of activities supporting the economy	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Threat posed to users	Level of threat posed to users	1	1	1	1	1	1	1	1	1	1	1	1	1	0.5	0.5	1	1	1	0.5	1
	Resource units with a high or very high EIS category	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0	0.5	0.5	0	0.5	1	0.5	0.5	0.5	0	0.5	0.5	0.5
Factorial Investoria	Resource units which have an A/B NEC and / or PES	0	0.5	0	0	0.5	0	0	0	0	0	0	0	0.5	0	0	0	0	0	0	0
Ecological importance	Resource units identified as National Freshwater Ecosystem Priority Areas	0	0	0	0	0	0	0	0	0	0	0	0	0.5	0	0	0	0	0	0	0
	Resource units identified as a priority in provincial / fine scale aquatic biodiversity plans	0	0	0	0	0	0	0	0	1	0	0	0.5	0.5	0	0	0	0	0	0	0
Threat faced by ecological component of the RU	Level of threat posed to ecological components of the resource unit	1	1	1	1	1	1	1	1	1	1	1	1	1	0.5	0.5	1	1	1	0.5	1
Management Considerations	Resource units with PES lower than a D Category or lower than the accepted gazetted category (NEC)	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
	Availability of monitoring data	1	0.5	0.5	0.5	0.5	0.5	0.5	1	1	0.5	1	1	1	0.5	1	1	1	1	1	0.5
Practical Considerations	Accessibility of resource unit for monitoring	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Safety risk associated with monitoring resource units.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.16	0.16	0.22	0.17	0.17	0.16	0.22
	PRIORITISATION SCORES	0.14	0.16	0.14	0.14	0.16	0.14	0.14	0.13	0.17	0.14	0.13	0.15	0.20	0.08	0.08	0.14	0.13	0.14	0.08	0.14
		0.03	0.02	0.38	0.38	0.02	0.38	0.38	0.39	0.03	0.38	0.52	0.54	0.72	0.26	0.03	0.03	0.34	0.36	0.03	0.38
		0.6	0.6	0.5	0.5	0.6	0.5	0.5	0.5	0.6	0.5	0.7	0.8	1.0	0.4	0.4	0.6	0.5	0.5	0.4	0.5

RESOURCE UN	IT PRIORITISATION TOOL																				
Criterion	Sub-criteria	RU 21	RU 22	RU 23	RU 24	RU 25	RU 26	RU 27	RU 28	RU 29	RU 30	RU 31	RU 32	RU 33	RU 34	RU 35	RU 36	RU 37	RU 38	RU39	RU40
Position of resource unit within IUA		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
	Cultural services	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Presence of significant vulnerable communities	0.5	0.5	0.5	0.5	1	1	0.5	0.5	1	0.5	1	0.5	1	0.5	1	0.5	1	1	1	1
Importance for users (Current & anticipated future use)	Use in meeting strategic requirements and international obligations	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1
,	Presence of supporting and regulating services	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Presence of activities supporting the economy	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0	0	0	0	0	0	0	0	0
Threat posed to users	Level of threat posed to users	1	1	1	1	1	1	1	0.5	0.5	0.5	0.5	1	1	1	0.5	0	0.5	1	1	1
	Resource units with a high or very high EIS category	0.5	0.5	0.5	0.5	0.5	1	1	0.5	1	1	0.5	0.5	1	0	1	0.5	0.5	0.5	0.5	0.5
F	Resource units which have an A/B NEC and / or PES	0	0	0	0	0	0	0	0	0	0.5	0	0.5	0	0	0.5	0.5	0	0.5	0	0
Ecological Importance	Resource units identified as National Freshwater Ecosystem Priority Areas	0	0	0	0	0	0	0	0	0	0	0	0	0	0.5	0.5	1	0	0	0	0
	Resource units identified as a priority in provincial / fine scale aquatic biodiversity plans	0	0	1	1	0	0	0	0.5	0.5	0.5	0.5	0	0	0	1	1	1	0.5	1	1
Threat faced by ecological component of the RU	Level of threat posed to ecological components of the resource unit	1	1	1	1	1	1	1	0.5	0.5	0.5	0.5	1	1	1	0.5	0	0.5	1	1	1
Management Considerations	Resource units with PES lower than a D Category or lower than the accepted gazetted category (NEC)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Availability of monitoring data	0.5	0.5	0.5	1	1	0.5	1	0.5	0	1	1	0	0	1	1	0	1	1	0.5	1
Practical Considerations	Accessibility of resource unit for monitoring	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Safety risk associated with monitoring resource units.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.25
		0.20	0.20	0.20	0.20	0.22	0.22	0.20	0.14	0.16	0.14	0.16	0.19	0.21	0.19	0.14	0.07	0.14	0.18	0.21	0.21
	PRIORITISATION SCORES	0.14	0.14	0.17	0.17	0.14	0.15	0.15	0.09	0.10	0.12	0.09	0.16	0.15	0.14	0.15	0.09	0.10	0.17	0.17	0.17
		0.37	0.37	0.39	0.42	0.03	0.40	0.03	0.26	0.26	0.31	0.55	0.35	0.36	0.38	0.34	0.00	0.29	0.39	0.40	0.67
		0.5	0.5	0.5	0.6	0.6	0.6	0.6	0.4	0.4	0.4	0.8	0.5	0.5	0.5	0.5	0.2	0.4	0.5	0.6	0.9
RESOURCE UN	IT PRIORITISATION TOOL																				
---	--	-------	-------	-------	-------	------	------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------
Criterion	Sub-criteria	RU 41	RU 42	RU 43	RU 44	RU45	RU46	RU 47	RU 48	RU 49	RU 50	RU 51	RU 52	RU 53	RU 54	RU 55	RU 56	RU 57	RU 58	RU 59	RU 60
Position of resource unit within IUA		0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	Cultural services	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Presence of significant vulnerable communities	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.5	1	0.5	0.5	0.5
Importance for users (Current & anticipated future use)	Use in meeting strategic requirements and international obligations	1	1	1	1	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0
	Presence of supporting and regulating services	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	0	0	0
	Presence of activities supporting the economy	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Threat posed to users	Level of threat posed to users	0.5	0.5	1	1	1	1	1	1	1	1	0.5	1	1	1	1	1	1	0.5	0.5	0.5
	Resource units with a high or very high EIS category	1	0.5	0.5	0.5	0	0	0	0.5	0.5	0	0.5	0.5	0.5	0.5	0	0.5	1	1	0	1
	Resource units which have an A/B NEC and / or PES	0	0	0	0	0	0	0	0.5	0	0	0.5	0	0	0	0	0	0	0.5	0	0.5
Ecological Importance	Resource units identified as National Freshwater Ecosystem Priority Areas	0	0	0.5	0	0	0	0.5	1	1	0	0	0	1	1	0	1	1	1	1	1
	Resource units identified as a priority in provincial / fine scale aquatic biodiversity plans	1	1	1	1	1	0	1	1	1	0	0	1	1	0	0	0.5	0.5	1	1	0.5
Threat faced by ecological component of the RU	Level of threat posed to ecological components of the resource unit	0.5	0.5	1	1	1	1	1	1	1	1	0.5	1	1	1	1	1	1	0.5	0.5	0.5
Management Considerations	Resource units with PES lower than a D Category or lower than the accepted gazetted category (NEC)	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Availability of monitoring data	1	0	0	0	1	0.5	0.5	0	1	1	0	1	1	1	1	1	1	0	1	0
Practical Considerations	Accessibility of resource unit for monitoring	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Safety risk associated with monitoring resource units.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0.00	0.00	0.00	0.00	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		0.14	0.14	0.21	0.21	0.21	0.21	0.20	0.20	0.23	0.23	0.14	0.20	0.20	0.20	0.20	0.17	0.20	0.11	0.11	0.11
	PRIORITISATION SCORES	0.12	0.10	0.18	0.17	0.15	0.13	0.17	0.22	0.20	0.13	0.09	0.17	0.20	0.18	0.13	0.19	0.20	0.17	0.13	0.16
	PRIORITISATION SCORES		0.00	0.00	0.00	0.05	0.15	0.15	0.00	0.05	0.05	0.00	0.05	0.05	0.05	0.05	0.05	0.05	0.00	0.05	0.00
			0.25	0.39	0.37	0.40	0.73	0.52	0.42	0.48	0.41	0.23	0.42	0.70	0.43	0.38	0.41	0.45	0.28	0.28	0.26
			0.3	0.5	0.5	0.6	1.0	0.7	0.6	0.7	0.6	0.3	0.6	1.0	0.6	0.5	0.6	0.6	0.4	0.4	0.4

RESOURCE UN	IT PRIORITISATION TOOL																				
Criterion	Sub-criteria	RU 61	RU 62	RU 63	RU64	RU65	RU 66	RU 67	RU 68	RU 69	RU 70	RU 71	RU 72	RU 73	RU 74	RU 75	RU 76	RU 77	RU 78	RU 79	RU 80
Position of resource unit within IUA		0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	Cultural services	0	0	0	0	1	1	0	0	0	0	1	1	0	0	0	1	1	0	0	0
	Presence of significant vulnerable communities	0.5	0.5	0.5	1	1	1	1	1	1	1	1	1	0.5	0.5	0.5	1	1	0.5	0.5	0.5
Importance for users (Current & anticipated future use)	Use in meeting strategic requirements and international obligations	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
·,	Presence of supporting and regulating services	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	1	1	0	0	0
	Presence of activities supporting the economy	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Threat posed to users	Level of threat posed to users	0.5	1	1	1	1	1	1	1	1	1	1	1	0.5	0.5	0.5	0.5	1	0.5	0.5	0
	Resource units with a high or very high EIS category	0.5	1	0.5	0	0.5	0.5	0.5	0	0.5	0.5	0.5	0.5	0.5	0	0.5	0.5	0.5	0.5	1	1
	Resource units which have an A/B NEC and / or PES	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.5
Ecological Importance	Resource units identified as National Freshwater Ecosystem Priority Areas	1	1	0	0.5	0	1	1	0	0	0	1	0	1	0	0	1	1	0	0	1
	Resource units identified as a priority in provincial / fine scale aquatic biodiversity plans	0.5	0.5	0.5	0.5	0	0	0	0	0	0	1	1	1	1	1	0	1	1	0	0.5
Threat faced by ecological component of the RU	Level of threat posed to ecological components of the resource unit	0.5	1	1	1	1	1	1	1	1	1	1	1	0.5	0.5	0.5	0.5	1	0.5	0.5	0
Management Considerations	Resource units with PES lower than a D Category or lower than the accepted gazetted category (NEC)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Availability of monitoring data	0	1	1	1	1	1	0	1	0	0	0.5	1	1	1	0	1	1	0	1	1
Practical Considerations	Accessibility of resource unit for monitoring	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Safety risk associated with monitoring resource units.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0.00	0.00	0.00	0.00	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		0.11	0.17	0.17	0.20	0.22	0.22	0.18	0.18	0.18	0.18	0.19	0.19	0.08	0.08	0.08	0.13	0.19	0.08	0.08	0.02
	PRIORITISATION SCORES	0.13	0.20	0.15	0.16	0.14	0.18	0.18	0.13	0.14	0.14	0.20	0.17	0.14	0.09	0.10	0.11	0.20	0.10	0.09	0.10
	PRIORITISATION SCORES		0.05	0.05	0.05	0.05	0.05	0.00	0.17	0.00	0.00	0.02	0.05	0.05	0.05	0.00	0.05	0.05	0.00	0.05	0.05
			0.42	0.37	0.41	0.41	0.69	0.35	0.47	0.31	0.31	0.42	0.65	0.27	0.21	0.18	0.29	0.44	0.18	0.22	0.16
		0.3	0.6	0.5	0.6	0.6	1.0	0.5	0.7	0.4	0.4	0.6	0.9	0.4	0.3	0.3	0.4	0.6	0.3	0.3	0.2

RESOURCE UN	IT PRIORITISATION TOOL																				
Criterion	Sub-criteria	RU 81	RU 82	RU 83	RU 8	RU85	RU86	RU 87	RU 88	RU 89	RU 90	RU 91	RU92	RU 93	RU 94	RU95	RU96	RU 97	RU98	RU 99	RU 100
Position of resource unit within IUA		0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1	0	0
	Cultural services	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Presence of significant vulnerable communities	0.5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Importance for users (Current & anticipated future use)	Use in meeting strategic requirements and international obligations	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Presence of supporting and regulating services	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Presence of activities supporting the economy	0	0	0	0	0	0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0	0.5	0.5	0.5	1	1
Threat posed to users	Level of threat posed to users	0.5	0.5	1	1	1	1	0.5	0.5	1	0	1	1	1	0	1	1	1	1	0.5	0.5
	Resource units with a high or very high EIS category	0	0.5	1	1	0	1	0.5	0.5	1	1	0.5	0	1	0.5	1	0.5	0.5	0.5	1	1
	Resource units which have an A/B NEC and / or PES	0	0.5	0	0	0	0	0.5	0.5	0	0.5	0.5	0	0.5	0.5	0	0	0	0	0	0
Ecological Importance	Resource units identified as National Freshwater Ecosystem Priority Areas	0	1	1	0	0	0	1	1	1	0	0	0	1	1	0	0	0.5	0	0	1
	Resource units identified as a priority in provincial / fine scale aquatic biodiversity plans	0.5	0	1	1	1	1	1	1	0.5	1	1	1	1	1	1	0	1	0.5	1	1
Threat faced by ecological component of the RU	Level of threat posed to ecological components of the resource unit	0.5	0.5	1	1	1	1	0.5	0.5	1	0	1	1	1	0	1	1	1	1	0.5	0.5
Management Considerations	Resource units with PES lower than a D Category or lower than the accepted gazetted category (NEC)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	Availability of monitoring data	1	1	1	1	1	1	0.5	1	0	1	0	1	1	0	1	1	1	1	1	1
Practical Considerations	Accessibility of resource unit for monitoring	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Safety risk associated with monitoring resource units.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0.00	0.25	0.00	0.00	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.25	0.25	0.00	0.00
	0.08		0.13	0.19	0.19	0.19	0.19	0.14	0.14	0.20	0.08	0.20	0.20	0.20	0.08	0.19	0.20	0.20	0.20	0.16	0.16
	PRIORITISATION SCORES	0.08	0.13	0.22	0.18	0.15	0.18	0.16	0.16	0.20	0.07	0.18	0.15	0.23	0.09	0.18	0.14	0.18	0.15	0.12	0.15
	PRIORITISATION SCORES		0.05	0.05	0.05	0.05	0.05	0.02	0.05	0.00	0.05	0.00	0.05	0.05	0.00	0.05	0.17	0.05	0.05	0.05	0.05
			0.56	0.46	0.42	0.39	0.67	0.32	0.35	0.41	0.20	0.39	0.40	0.49	0.17	0.42	0.52	0.69	0.65	0.32	0.36
		0.3	0.8	0.6	0.6	0.5	0.9	0.4	0.5	0.6	0.3	0.5	0.6	0.7	0.2	0.6	0.7	1.0	0.9	0.4	0.5

RESOURCE UN	IT PRIORITISATION TOOL																					
Criterion	Sub-criteria	RU 101	RU 102	RU103	RU104	RU 105	RU 106	RU 107	RU 108	RU 109	RU 110	RU 111	RU 112	RU 113	RU114	RU 115	RU116	RU 117	RU 118	RU 119	RU 120	RU 121
Position of resource unit within IUA		0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
	Cultural services	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Presence of significant vulnerable communities	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Importance for users (Current & anticipated future use)	Use in meeting strategic requirements and international obligations	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
·····,	Presence of supporting and regulating services	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Presence of activities supporting the economy	1	1	1	1	0	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Threat posed to users	Level of threat posed to users	0.5	1	1	1	1	0.5	1	0	1	1	0.5	0.5	1	1	0	1	0.5	0	0.5	0.5	1
	Resource units with a high or very high EIS category	0	0	0	0.5	0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	1	1	1	1	1
For local days and the second	Resource units which have an A/B NEC and / or PES	0	0.5	0	0	0	0	0	0.5	0.5	0.5	0.5	0.5	0.5	0	1	0	0	0.5	0.5	1	0.5
Ecological Importance	Resource units identified as National Freshwater Ecosystem Priority Areas	0	0	0	0	0	1	0	0	0	0	0	0	1	0.5	1	1	1	1	1	1	1
	Resource units identified as a priority in provincial / fine scale aquatic biodiversity plans	1	0.5	0.5	0	0.5	1	1	1	1	1	0.5	1	1	1	1	1	1	1	1	1	1
Threat faced by ecological component of the RU	Level of threat posed to ecological components of the resource unit	0.5	1	1	1	1	0.5	1	0	1	1	0.5	0.5	1	1	0	1	0.5	0	0.5	0.5	1
Management Considerations	Resource units with PES lower than a D Category or lower than the accepted gazetted category (NEC)	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Availability of monitoring data	1	0	1	0	1	1	0	0.5	0	0	0	0	0	1	0	0.5	1	1	1	1	1
Practical Considerations	Accessibility of resource unit for monitoring	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	Safety risk associated with monitoring resource units.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0.00	0.00	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.25	0.00	0.00	0.00	0.00	0.25
		0.16	0.22	0.22	0.22	0.19	0.14	0.19	0.07	0.19	0.19	0.13	0.13	0.19	0.19	0.07	0.19	0.13	0.07	0.13	0.13	0.19
	PRIORITISATION SCORES	0.09	0.15	0.14	0.14	0.14	0.14	0.17	0.06	0.18	0.18	0.11	0.12	0.22	0.18	0.11	0.20	0.15	0.11	0.17	0.19	0.23
	PRIORITISATION SCORES 0.05	0.00	0.17	0.13	0.05	0.05	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.05	0.00	0.02	0.05	0.05	0.05	0.05	0.05	
	0.29		0.37	0.53	0.73	0.38	0.33	0.36	0.15	0.37	0.37	0.23	0.25	0.41	0.42	0.18	0.67	0.33	0.22	0.35	0.36	0.72
		0.4	0.5	0.7	1.0	0.5	0.5	0.5	0.2	0.5	0.5	0.5	0.5	0.0	0.0	0.2	0.9	0.5	0.5	0.5	0.5	1.0

9.3 APPENDIX A3: MOTIVATION FOR CHANGES TO SCORES FROM DESKTOP RU PRIORITISATION TOOL WHICH RESULTED IN THE AMENDED PRIORITISATION TOOL.

Note shading denotes:

= Increased score

= No change to score

= Decreased score

1. Resource units located on a large main stem river at the downstream end of an IUA (IUA outlet node)

RU	Desktop	Workshop	Motivation for change
20	0	1	Query boundary as it seems incorrect
46	1	1	This was not identified in GOB's spread sheet

2. Resource units which provide important cultural services to society

RU	Desktop	Workshop	Motivation for change
9	0	1	Swimming is a recreational activity in this RU
11	0	1	Tourism and aesthetics
13	0	1	Tourism and aesthetics
34	0	1	Tourism
35	0	1	Recreational activities
36	0	1	Tourism and aesthetics
37	0	1	Tourism
52	0	1	Baptisms occur in this RU. Water collected from this RU at the confluence
65	1	0	Downgrade – stakeholder input
71	1	0	Downgrade – stakeholder input
72	1	1	Confluence with Olifants very important
76	1	0	Downgrade – stakeholder input
77	1	0	Downgrade – stakeholder input
82	1	0	Downgrade – stakeholder input
83	1	0	Downgrade – stakeholder input
84	1	0	Downgrade – stakeholder input
85	1	0	Downgrade – stakeholder input
86	1	0	Downgrade – stakeholder input
87	1	0	Downgrade – stakeholder input
88	1	1	Canoeing and white water rafting
89	1	1	Canoeing and white water rafting
90	1	0	Downgrade – stakeholder input

RU	Desktop	Workshop	Motivation for change
91	1	0	Downgrade – stakeholder input
92	1	0	Downgrade – stakeholder input
93	1	0	Downgrade – stakeholder input
94	1	0	Downgrade – stakeholder input
96	1	0	Downgrade – stakeholder input

3. Resource units which are important in supporting livelihoods of significant vulnerable communities

RU	Desktop	Workshop	Motivation for change
1	0.5	0	
2	0.5	0	
4	0.5	0	Downgrade – stakeholder input
5	0.5	0	Downgrade - Stakenolder Input
6	0.5	0	
7	0.5	0	
9	0.5	0.5	Witbank area - people living next to the river but not using the water for human consumption
10	0.5	0	Downgrade stakeholder input
11	0.5	0	Downgrade – Stakenolder Input
12	0.5	1	Vulnerable communities identified in this RU
13	0.5	0	
14	0.5	0	
15	0.5	0	
16	0.5	0	
17	0.5	0	
19	0.5	0	
21	0.5	0	
24	0.5	0	
25	1	0.5	
26	1	0	
29	1	0.5	
30	0.5	0	
31	1	0	Downgrade –stakeholder input
32	0.5	0	
33	1	0	
34	0.5	0	
35	1	0	
36	0.5	0	
37	1	0	
38	1	0	
39	1	0	
40	1	0	
42	1	0.5	
43	1	0.5	
44	1	0.5	

RU	Desktop	Workshop	Motivation for change
45	1	0.5	
46	1	0.5	
48	1	0	
50	1	0	
51	1	0	
52	1	0.5	
53	1	0.5	
54	1	0	
55	1	0	
56	0.5	0	
57	1	0.5	
58	0.5	0	
59	0.5	0	
60	0.5	0	
61	0.5	0	
62	0.5	0	
63	0.5	0	
64	1	0.5	
65	1	0.5	
66	1	0.5	
67	1	0.5	
68	1	0	
69	1	0	
70	1	0	
71	1	0.5	
73	0.5	0	
74	0.5	0	
75	0.5	0	
76	1	0	
77	1	0	
78	0.5	0	
79	0.5	0	
80	0.5	0	
81	0.5	0	
82	1	0	
83	1	0	
84	1	0	
85	1	0	
86	1	0	
87	1	0	
88	1	0	
89	1	0	
90	1	0	
91	1	0	
92	1	0	

RU	Desktop	Workshop	Motivation for change
93	1	0	
94	1	0	
95	1	0.5	
96	1	1	Lepelle community just past the tunnel there are vulnerable communities here who depend on water falls for water
97	1	0.5	The Ox river - some dependence in the river by the Mabins and Kororo communities.
98	1	0	
99	1	0.5	
100	1	0	
101	1	0	
102	1	0	
103	1	0.5	
104	1	0	
105	1	0	
106	1	0	
107	1	0	
108	1	0	
109	1	0	Downgrada stakeholder input
110	1	0	
111	1	0	
112	1	0.5	
113	1	0	
114	1	0	
115	1	0	
116	1	0	
117	1	0	
118	1	0	
119	1	0	
120	1	0	
121	1	0	

4. Resource units which are important in meeting strategic requirements and international obligations

RU	Desktop	Workshop	Motivation for change
1	1	0	
2	1	0	
3	1	0	
4	1	0	Downgraded as stakeholders indicated that strategic
5	1	0	water is from the Komati and Vaal therefore it is not
6	1	0	sourced within the WMA.
7	1	0	
8	1	0	
9	1	0	

RU	Desktop	Workshop	Motivation for change
10	1	0	
11	1	0	
12	1	0	
13	1	0	
14	1	0	
15	1	0	
16	1	0	
17		0	
18		0	
19	1	0	
20	1	0	
21	1	0	
22	1	0	
23	1	0	
24	1	0	
25	1	0	
26	1	0	
27	1	0	
28	1	0	
29	1	0	
30	1	0	
31	1	0	
32	1	0	
33	1	0	
34	1	0	
35	1	0	
36	1	0	
37	1	0	
38	0	0	
39	1	0	
40	1	0	
41	1	0	
42	1	0	
43	1	0	
44	1	0	
45	1	0	
46	1	0	
47	0	0	
48	0	0	
49	1	0	
50	1	0	
120	0	0	
121	0	1	Releases into Mozambique

RU	Desktop	Workshop	Motivation for change
1	1	0.5	
2	1	0	
3	1	0	Downgrado stakoholdar input
5	1	0	
6	1	0.5	
7	1	0	
8	1	1	Returns just before the dam
10	1	0	Downgrade – stakeholder input
12	1	1	Industrial waste and there is a wetland here (?)
14	1	0	
15	1	0	
16	1	0.5	
17	0	0.5	
18	0	0.5	Downgrade stakeholder input
19	1	0	Downgrade – Stakenolder Input
20	1	0.5	
21	1	0	
22	1	0	
23	1	0	
24	1	1	Bronkhorstpruit and Enkangala industrial area
25	1	0	Downgrade – stakeholder input
26	1	1	Bronkhorstpruit and enkangala industrial area
27	1	0.5	
28	1	0	Downgrade – stakeholder input
29	1	0	
30	1	1	Bronkhorstpruit and Enkangala industrial area
31	1	1	Bronkhorstpruit and Enkangala industrial area
32	1	0	
33	1	0	
34	1	0.5	
35	1	0	
36	1	0	Downgrada stakoholder innut
38	1	0	Downgrade – stakenolder input
39	1	0	
41	1	0	
42	1	0	
43	1	0.5	
44	1	0.5	WWTW in upper reaches
45	1	0.5	Downgrade – stakeholder input
46	1	0.5	Downgrade – stakeholder input
49	1	1	Community, agriculture and sewage problems
50	1	1	Bronkhorstpruit and Enkangala industrial area- cascading effect of

5. Resource units that provide supporting and regulating services

Image: state in the industrial area in this RU 51 1 0 54 1 0 Downgrade – stakeholder input 55 1 0.5 Downgrade – stakeholder input 58 0 1 Belfast WWTW 59 0 0.5 Downstream catchment of the two WWTWs and poor water quality 64 1 0.5 Downgrade – stakeholder input 68 1 0.5 Downgrade – stakeholder input 68 1 0.5 Downgrade – stakeholder input 70 1 0 Downgrade – stakeholder input 71 1 0 Downgrade – stakeholder input 76 1 0.5 Downgrade – stakeholder input 77 1 0 Main stem river 81 0 1 Main stem river 83 1 1 Sewage in Dorpspruit -future developments (prospecting intense in this area -proliferation if informal settlements) 84 1 0 Downgrade – stakeholder input 86 1 0.5<	RU	Desktop	Workshop	Motivation for change
51 1 0 Downgrade - stakeholder input 55 1 0 56 0 1 Two dams and sewage works in this RU 57 1 0.5 Downgrade - stakeholder input 58 0 1 Beifast WWTW 59 0 0.5 Downgrade - stakeholder input 64 1 0.5 Downgrade - stakeholder input 68 1 0.5 Downgrade - stakeholder input 69 1 0 Downgrade - stakeholder input 70 1 0 Downgrade - stakeholder input 74 0 1 Sewage in Dorpspruit 76 1 0.5 Downgrade - stakeholder input 77 1 0 Downgrade - stakeholder input 81 0 1 Main stem river 83 1 1 in this area -proliferation if informal settlements) 84 1 0 Downgrade - stakeholder input 85 1 0.5 Future sewage problems <td></td> <td></td> <td></td> <td>the industrial area in this RU</td>				the industrial area in this RU
54 1 0 Downgrade - stakeholder input 56 0 1 Two dams and sewage works in this RU 57 1 0.5 Downgrade - stakeholder input 58 0 1 Beffast WWTW 59 0 0.5 Downstream catchment of the two WWTWs and poor water quality 64 1 0.5 Downgrade - stakeholder input 65 1 0.5 Downgrade - stakeholder input 68 1 0 Downgrade - stakeholder input 69 1 0 Downgrade - stakeholder input 77 1 0 Downgrade - stakeholder input 76 1 0.5 Downgrade - stakeholder input 77 1 0 Sewage in Dorpspruit -future developments (prospecting intense in this area - proliferation if informal settlements) 83 1 1 Sewage in Dorpspruit -future developments (prospecting intense in this area - proliferation if informal settlements) 84 1 0 Downgrade - stakeholder input 85 1 0.5 Future sewage problem	51	1	0	
55 1 0 56 0 1 Two dams and sewage works in this RU 57 1 0.5 Downgrade – stakeholder input 58 0 1 Beffast WWTW 59 0 0.5 Downstream catchment of the two WWTWs and poor water quality 64 1 0.5 Gowngrade – stakeholder input 65 1 0.5 Gowngrade – stakeholder input 68 1 0 Downgrade – stakeholder input 69 1 0 Gowngrade – stakeholder input 70 1 0 Downgrade – stakeholder input 71 1 0 Downgrade – stakeholder input 71 1 0 Downgrade – stakeholder input 81 0 1 Main stem river 83 1 1 In this area -proliferation if informal settlements) 84 1 0 Downgrade – stakeholder input 85 1 0.5 Future sewage problems 86 1 0.5	54	1	0	Downgrade – stakeholder input
56 0 1 Two dams and sewage works in this RU 57 1 0.5 Downgrade – stakeholder input 58 0 1 Beffast WWTW 59 0 0.5 Downstream catchment of the two WWTWs and poor water quality 64 1 0.5 Downstream catchment of the two WWTWs and poor water quality 64 1 0.5 Downgrade – stakeholder input 69 1 0 Downgrade – stakeholder input 69 1 0 Downgrade – stakeholder input 71 1 0 Downgrade – stakeholder input 74 0 1 Sewage in Dorpspruit 76 1 0.5 Downgrade – stakeholder input 77 1 0 Downgrade – stakeholder input 83 1 1 Sewage in Dorpspruit -future developments (prospecting intense in this area -proliferation if informal settlements) 84 1 0 Downgrade – stakeholder input 85 1 0.5 Future sewage problems 87 1	55	1	0	
57 1 0.5 Downgrade - stakeholder input 58 0 1 Belfast WWTW 59 0 0.5 Downstream catchment of the two WWTWs and poor water quality 64 1 0.5 Downstream catchment of the two WWTWs and poor water quality 65 1 0.5 Downgrade - stakeholder input 68 1 0 Downgrade - stakeholder input 69 1 0 Downgrade - stakeholder input 70 1 0 Downgrade - stakeholder input 74 0 1 Sewage in Dorpspruit 76 1 0.5 Downgrade - stakeholder input 77 1 0 Downgrade - stakeholder input 81 0 1 Main stem river 83 1 0.5 Future sewage problems 84 1 0 Downgrade - stakeholder input 85 1 0.5 Future sewage problems 87 1 0 Downgrade - stakeholder input 90 <	56	0	1	Two dams and sewage works in this RU
58 0 1 Befast WWTW 59 0 0.5 Downstream catchment of the two WWTWs and poor water quality 64 1 0.5 Sewage in Corpsprut Downgrade - stakeholder input 67 1 0 Sewage in Dorpspruit Downgrade - stakeholder input 70 1 0 Sewage in Dorpspruit Downgrade - stakeholder input 74 0 1 Sewage in Dorpspruit - future developments (prospecting intense in this area - proliferation fi informal settlements) 81 0 1 Main stem river 83 1 1 Sewage in Dorpspruit - future developments (prospecting intense in this area - proliferation fi informal settlements) 84 1 0 Downgrade - stakeholder input 85 1 0.5 Future sewage problems 86 1 0.5 Future sewage problems 87 1 0 Downgrade - stakeholder input 99 1 0 Downgrade - stakeholder input 91 1 0 Downgrade - stakeholder input 93 <td>57</td> <td>1</td> <td>0.5</td> <td>Downgrade – stakeholder input</td>	57	1	0.5	Downgrade – stakeholder input
59 0 0.5 Downstream catchment of the two WWTWs and poor water quality 64 1 0.5 0 65 1 0.5 0 67 1 0 0 68 1 0 0 69 1 0 0 70 1 0 0 71 1 0 0 0 74 0 1 Sewage in Dorpspruit 0 76 1 0.5 Downgrade - stakeholder input 81 0 1 Main stem river 83 1 1 Sewage in Dorpspruit -future developments (prospecting intense in this area -proliferation if informal settlements) 84 1 0 Downgrade - stakeholder input 85 1 0.5 Future sewage problems 86 1 0.5 Future sewage problems 87 1 0 Downgrade - stakeholder input 99 1 0 Downgrade - stakeholder input	58	0	1	Belfast WWTW
64 1 0.5 65 1 0.5 67 1 0 68 1 0 69 1 0 70 1 0 71 1 0 74 0 1 Sewage in Dorpspruit 74 0 1 Sewage in Dorpspruit 76 1 0.5 Downgrade - stakeholder input 81 0 1 Main stem river 83 1 1 Sewage in Dorpspruit future developments (prospecting intense in this area -proliferation if informal settlements) 84 1 0 Downgrade - stakeholder input 85 1 0.5 Future sewage problems 86 1 0.5 Future sewage problems 87 1 0 Downgrade - stakeholder input 90 1 0 Downgrade - stakeholder input 91 1 0 Downgrade - stakeholder input 94 1 0 Downgrade - s	59	0	0.5	Downstream catchment of the two WWTWs and poor water quality
65 1 0.5 67 1 0 68 1 0 69 1 0 70 1 0 71 1 0 74 0 1 Sewage in Dorpspruit 76 1 0.5 Downgrade – stakeholder input 77 1 0 Downgrade – stakeholder input 81 0 1 Main stem river 83 1 1 Sewage in Dorpspruit -future developments (prospecting intense in this area -proliferation if informal settlements) 84 1 0 Downgrade – stakeholder input 85 1 0.5 Future sewage problems 86 1 0.5 Future sewage problems 87 1 0 Downgrade – stakeholder input 90 1 0 Downgrade – stakeholder input 91 1 0 Downgrade – stakeholder input 91 1 0 Downgrade – stakeholder input	64	1	0.5	
67 1 0 68 1 0 69 1 0 70 1 0 71 1 0 74 0 1 Sewage in Dorpspruit 76 1 0.5 Downgrade – stakeholder input 77 1 0 Downgrade – stakeholder input 81 0 1 Main stem river 83 1 1 Sewage in Dorpspruit -future developments (prospecting intense in this area -proliferation if informal settlements) 84 1 0 Downgrade – stakeholder input 85 1 0.5 Future sewage problems 87 1 0 Downgrade – stakeholder input 89 1 1 Main stem 90 1 0 Downgrade – stakeholder input 91 1 0 Downgrade – stakeholder input 91 1 0 Downgrade – stakeholder input 91 1 0 Downgrade – sta	65	1	0.5	
68 1 0 Downgrade - stakeholder input 69 1 0 70 1 0 70 1 0 0 0 0 71 1 0 1 Sewage in Dorpspruit 0 74 0 1 Sewage in Dorpspruit-future developments (prospecting intense in this area -proliferation if informal settlements) 0 81 0 1 Main stem river 0 0 83 1 1 0 Downgrade - stakeholder input 0 84 1 0 Downgrade - stakeholder input 0 0 85 1 0.5 Future sewage problems 0 0 86 1 0.5 Future sewage problems 0 0 90 1 0 Downgrade - stakeholder input 0 0 91 1 0 Downgrade - stakeholder input 0 0 93 1 0 Downgrade - stakeholder input 0	67	1	0	
69 1 0 70 1 0 71 1 0 74 0 1 Sewage in Dorpspruit 76 1 0.5 Downgrade - stakeholder input 77 1 0 Downgrade - stakeholder input 81 0 1 Main stem river 83 1 1 Sewage in Dorpspruit -future developments (prospecting intense in this area - proliferation if informal settlements) 84 1 0 Downgrade - stakeholder input 85 1 0.5 Future sewage problems 86 1 0.5 Future sewage problems 87 1 0 Downgrade - stakeholder input 89 1 1 Main stem 90 1 0 Downgrade - stakeholder input 91 1 0 Downgrade - stakeholder input 93 1 0 Downgrade - stakeholder input 100 1 0 Downgrade - stakeholder input 101	68	1	0	Downgrade – stakeholder input
70 1 0 71 1 0 1 Sewage in Dorpspruit 76 1 0.5 Downgrade – stakeholder input 77 1 0 1 Bowngrade – stakeholder input 81 0 1 Main stem river 83 1 1 Sewage in Dorpspruit -future developments (prospecting intense in this area -proliferation if informal settlements) 84 1 0 Downgrade – stakeholder input 85 1 0.5 Future sewage problems 86 1 0.5 Future sewage problems 87 1 0 Downgrade – stakeholder input 89 1 1 Main stem 90 1 0 Downgrade – stakeholder input 93 1 0 Downgrade – stakeholder input 94 1 0 Downgrade – stakeholder input 100 1 0 Downgrade – stakeholder input 101 1 0 Downgrade – stakeholder input 102	69	1	0	
71 1 0 74 0 1 Sewage in Dorpspruit 76 1 0.5 Downgrade – stakeholder input 77 1 0 Main stem river 81 0 1 Main stem river 83 1 1 Sewage in Dorpspruit -future developments (prospecting intense in this area -proliferation if informal settlements) 84 1 0 Downgrade – stakeholder input 85 1 0.5 Future sewage problems 86 1 0.5 Future sewage problems 87 1 0 Downgrade – stakeholder input 89 1 1 Main stem 90 1 0 Downgrade – stakeholder input 93 1 0 Downgrade – stakeholder input 94 1 0 Downgrade – stakeholder input 91 1 0 Downgrade – stakeholder input 91 0 0 Downgrade – stakeholder input 100 1	70	1	0	
74 0 1 Sewage in Dorpspruit 76 1 0.5 Downgrade – stakeholder input 77 1 0 Main stem river 81 0 1 Main stem river 83 1 1 Sewage in Dorpspruit -future developments (prospecting intense in this area -proliferation if informal settlements) 84 1 0 Downgrade – stakeholder input 85 1 0.5 Future sewage problems 86 1 0.5 Future sewage problems 87 1 0 Downgrade – stakeholder input 89 1 1 Main stem 90 1 0 Downgrade – stakeholder input 93 1 0 Downgrade – stakeholder input 94 1 0 Downgrade – stakeholder input 98 1 1 Main stem 99 1 0 Downgrade – stakeholder input 100 1 0 Downgrade – stakeholder input 101 0	71	1	0	
76 1 0.5 Downgrade – stakeholder input 77 1 0 Main stem river 81 0 1 Main stem river 83 1 1 Sewage in Dorpspruit -future developments (prospecting intense in this area -proliferation if informal settlements) 84 1 0 Downgrade – stakeholder input 85 1 0.5 Future sewage problems 86 1 0.5 Future sewage problems 86 1 0.5 Future sewage problems 87 1 0 Downgrade – stakeholder input 89 1 1 Main stem 90 1 0 Downgrade – stakeholder input 91 1 0 Downgrade – stakeholder input 94 1 0 Downgrade – stakeholder input 94 1 0 Downgrade – stakeholder input 100 1 0 Downgrade – stakeholder input 102 1 0 Downgrade – stakeholder input <td>74</td> <td>0</td> <td>1</td> <td>Sewage in Dorpspruit</td>	74	0	1	Sewage in Dorpspruit
77 1 0 Dumgrade - stateholder input 81 0 1 Main stem river 83 1 1 Sewage in Dorpspruit -future developments (prospecting intense in this area -proliferation if informal settlements) 84 1 0 Downgrade - stakeholder input 85 1 0.5 Future sewage problems 86 1 0.5 Future sewage problems 87 1 0 Downgrade - stakeholder input 89 1 1 Main stem 90 1 0 Downgrade - stakeholder input 93 1 0 Downgrade - stakeholder input 94 1 0 Downgrade - stakeholder input 94 1 0 Downgrade - stakeholder input 97 1 0 Downgrade - stakeholder input 100 1 0 Downgrade - stakeholder input 101 1 0 Downgrade - stakeholder input 102 1 0 Downgrade - stakeholder input	76	1	0.5	Downgrade – stakeholder input
81 0 1 Main stem river 83 1 1 Sewage in Dorpspruit -future developments (prospecting intense in this area -proliferation if informal settlements) 84 1 0 Downgrade - stakeholder input 85 1 0.5 Future sewage problems 86 1 0.5 Future sewage problems 87 1 0 Downgrade - stakeholder input 89 1 1 Main stem 90 1 0 Downgrade - stakeholder input 93 1 0 Downgrade - stakeholder input 94 1 0 Downgrade - stakeholder input 94 1 0 Downgrade - stakeholder input 97 1 0 Downgrade - stakeholder input 100 1 0 Downgrade - stakeholder input 101 1 0 Downgrade - stakeholder input 102 1 0 Downgrade - stakeholder input 103 1 1 Raw sewage and effluent <t< td=""><td>77</td><td>1</td><td>0</td><td></td></t<>	77	1	0	
83 1 1 Sewage in Dorpspruit -future developments (prospecting intense in this area -proliferation if informal settlements) 84 1 0 Downgrade – stakeholder input 85 1 0.5 Future sewage problems 86 1 0.5 Future sewage problems 87 1 0 Downgrade – stakeholder input 89 1 1 Main stem 90 1 0 Downgrade – stakeholder input 91 1 0 Downgrade – stakeholder input 91 1 0 Downgrade – stakeholder input 94 1 0 Downgrade – stakeholder input 94 1 0 Downgrade – stakeholder input 98 1 1 Main stem 99 1 0 Downgrade – stakeholder input 100 1 0 Downgrade – stakeholder input 101 1 0 Downgrade – stakeholder input 102 1 0 Downgrade – stakeholder input <td>81</td> <td>0</td> <td>1</td> <td>Main stem river</td>	81	0	1	Main stem river
84 1 0 Downgrade – stakeholder input 85 1 0.5 Future sewage problems 86 1 0.5 Future sewage problems 87 1 0 Downgrade – stakeholder input 89 1 1 Main stem 90 1 0 Downgrade – stakeholder input 91 1 0 Downgrade – stakeholder input 93 1 0 Downgrade – stakeholder input 94 1 0 Downgrade – stakeholder input 94 1 0 Downgrade – stakeholder input 98 1 1 Main stem 99 1 0 Downgrade – stakeholder input 100 1 0 Downgrade – stakeholder input 101 1 0 Downgrade – stakeholder input 102 1 0 Downgrade – stakeholder input 103 1 1 Raw sewage and effluent 106 1 0 Downgrade – stakeholder input <td>83</td> <td>1</td> <td>1</td> <td>Sewage in Dorpspruit -future developments (prospecting intense in this area -proliferation if informal settlements)</td>	83	1	1	Sewage in Dorpspruit -future developments (prospecting intense in this area -proliferation if informal settlements)
85 1 0.5 Future sewage problems 86 1 0.5 Future sewage problems 87 1 0 Downgrade – stakeholder input 89 1 1 Main stem 90 1 0 91 1 0 93 1 0 94 1 0 97 1 0 98 1 1 Main stem 99 1 0 100 1 0 101 1 0 102 1 0 103 1 1 Raw sewage and effluent 106 1 0 107 1 0 108 1 0 109 1 0 1010 1 0	84	1	0	Downgrade – stakeholder input
86 1 0.5 Future sewage problems 87 1 0 Downgrade – stakeholder input 89 1 1 Main stem 90 1 0 0 91 1 0 0 91 1 0 0 91 1 0 0 93 1 0 0 94 1 0 0 97 1 0 0 98 1 1 Main stem 99 1 0 0 100 1 0 0 101 1 0 0 102 1 0 0 103 1 1 Raw sewage and effluent 106 1 0 0 109 1 0 0 110 1 0 0 110 1 0 <td>85</td> <td>1</td> <td>0.5</td> <td>Future sewage problems</td>	85	1	0.5	Future sewage problems
87 1 0 Downgrade – stakeholder input 89 1 1 Main stem 90 1 0 91 1 0 93 1 0 93 1 0 94 1 0 97 1 0 98 1 1 99 1 0 100 1 0 100 1 0 101 1 0 102 1 0 103 1 1 106 1 0 107 1 0 108 1 0 110 1 0 110 1 0	86	1	0.5	Future sewage problems
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	87	1	0	Downgrade – stakeholder input
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	89	1	1	Main stem
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	90	1	0	
93 1 0 Downgrade – stakeholder input 94 1 0 0 97 1 0 0 98 1 1 Main stem 99 1 0 0 100 1 0 0 100 1 0 0 101 1 0 0 102 1 0 0 103 1 1 Raw sewage and effluent 106 1 0 0 107 1 0 0 108 1 0 0 110 1 0 0 110 1 0 0 110 1 0 0	91	1	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	93	1	0	Downgrade – stakeholder input
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	94	1	0	
98 1 1 Main stem 99 1 0 100 1 0 101 1 0 102 1 0 103 1 1 106 1 0 107 1 0 108 1 0 109 1 0 110 1 0	97	1	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	98	1	1	Main stem
100 1 0 101 1 0 102 1 0 103 1 1 106 1 0 107 1 0 108 1 0 109 1 0 110 1 0	99	1	0	
101 1 0 Downgrade – stakeholder input 102 1 0 0 103 1 1 Raw sewage and effluent 106 1 0 107 1 0 108 1 0 109 1 0 110 1 0	100	1	0	
102 1 0 103 1 1 Raw sewage and effluent 106 1 0 107 1 0 108 1 0 109 1 0 110 1 0	101	1	0	- Downgrade – stakeholder input
103 1 1 Raw sewage and effluent 106 1 0 107 1 0 108 1 0 109 1 0 110 1 0	102	1	0	
106 1 0 107 1 0 108 1 0 109 1 0 110 1 0	103	1	1	Raw sewage and effluent
107 1 0 108 1 0 109 1 0 110 1 0	106	1	0	
108 1 0 109 1 0 110 1 0	107	1	0	
109 1 0 110 1 0 111 1 0	108	1	0	1
	109	1	0	Downgrade – stakeholder input
	110	1	0	1
	111	1	0	1

RU	Desktop	Workshop	Motivation for change
112	1	0	
113	1	0	
114	1	0	
115	1	0	
116	1	1	Main stem
117	1	0	
118	1	0	
119	1	0	Downgrade – stakeholder input
120	1	0	
121	1	0	

6. Resource units most important in supporting activities contributing to the economy in the catchment

RU	Desktop	Workshop	Motivation for change
12	1	0	Closed mines of Anglo
13	1	1	Tourism
14	1	1	Tourism
18	1	0	Downgrade-No activities
20	1	0	Downgrade-No activities
21	0.5	1	Mines and Delmas area
22	0.5	1	Significant agriculture
23	0.5	1	Significant agriculture
24	0.5	1	Agricultural activities
25	0.5	0.5	Grazing areas in this RU
26	0.5	1	Industrial area
27	0.5	1	Tourism and mining and agriculture (extensive)
28	0.5	1	New Mine
31	0.5	1	Tourism
33	0	1	Mines and agriculture intensive (irrigation farming)
38	0	1	Mines and agriculture intensive (irrigation farming)
40	0	1	Tourism. Some irrigation schemes in this region too
47	1	0	No activities identified
53	1	0	No activities identified
54	1	1	Extensive agriculture
58	1	0	Downgrade in escarpment- not used
74	0	1	Lydenburg smelter
81	0	1	Intensive farming
83	0	1	Intensive agriculture
85	0	1	Intensive agriculture

88	0.5	1	Increase
89	0.5	1	Agriculture (intensive)
95	0.5	1	Atok Platinum mine -two mines on either side of the R37
96	0.5	1	Farming extensive, mainly citrus
98	0.5	1	Agriculture (intensive)
99	1	0.5	
100	1	0.5	Downgradad, stakeholder input
101	1	0.5	Downgraded -statenoider input
102	1	0.5	
104	1	1	Intensive agriculture
105	0	1	Intensive agriculture
106	0	0.5	Farming
113	0	0.5	Farming
114	0	1	Agricultural until boundary of KNP
115	0	1	KNP
116	0	1	KNP

7. Level of threat posed to users

RU	Desktop	Workshop	Motivation for change
14	0.5	1	Effects from upper Olifants considering the economic activities
15	0.5	1	above these RUs
18	1	0	Downgrade – stakeholder input
19	0.5	1	High threat to ecosystem
20	1	0	
25	1	0	
28	0.5	0	
29	0.5	0	
30	0.5	0	
31	0.5	0	
32	1	0	
34	1	0	
35	0.5	0	
36	0	0	
37	0.5	0	Course abanged on the criterian had to be reconcidered
39	1	0	therefore changed as the chief of high use and high threats to the
40	1	0	consister Where scores have been decreased the score
41	0.5	0	reflects the lessened threat to users in terms of use and threat
42	0.5	0	to ecosystem
43	1	0	
44	1	0	
45	1	0	
46	1	0	
47	1	0	
48	1	0	
51	0.5	0	
53	1	0	
58	0.5	0	
59	0.5	0	
60	0.5	0	

RU	Desktop	Workshop	Motivation for change
61	0.5	0	
67	1	0	
68	1	0	
69	1	0	
70	1	0	
71	1	0	
72	1	0	
73	0.5	0	
74	0.5	0	
75	0.5	0	
76	0.5	0	
77	1	0	
78	0.5	0	
79	0.5	0	
81	0.5	0	
82	0.5	0	
86	1	0	
87	0.5	0	
88	0.5	0	
89	1	0	
91	1	0	
92	1	0	
93	1	0	
96	1	0	
97	1	0	
99	0.5	0	
100	0.5	0	
101	0.5	0	
102	1	0	
106	0.5	0	
107	1	0	
109	1	0	
110	1	0	
111	0.5	0	
112	0.5	0	
113	1	0	
114	1	0	
117	0.5	0	
119	0.5	0	
120	0.5	0	
121	1	0	

8. Resource units with a high or very high EIS category

RU	Desktop	Workshop	Motivation for change
114	0.5	1	Tygerfish in this RU
115	0.5	1	Mermaids in this RU –cultural/spiritual significance
116	0.5	1	KNP area

9. Resource units which have an A/B NEC and / or PES

RU	Desktop	Workshop	Motivation for change
11	0	1	Information from stakeholder (KP)
35	0.5	1	Information from stakeholder (RS)

10. Resource units identified as National Freshwater Ecosystem Priority Areas

No changes to this sub-criterion.

11. Resource units identified as a priority in provincial / fine scale aquatic biodiversity plans

RU	Desktop	Workshop	Motivation for change
17	0	0.5	Input from stakeholder (KP)
18	0	0.5	Input from stakeholder (KP)
53	1	0	Downgrade –stakeholder input
54	0	0 1	Belfast- MBCP –Steenkoolspruit
			Presence of wetlands in this RU (Langspruit)

12. Level of threat posed to ecological components of the resource unit

No changes made to this sub-criterion.

13. Resource units with PES lower than a D Category or lower than the accepted gazetted category (NEC)

RU	Desktop	Workshop	Motivation for change
1	0	1	
3	0	1	
6	0	1	
7	0	1	
16	0	1	
53	0	1	
65	0	1	
66	0	1	
67	0	1	
72	0	1	
95	0	1	
114	0	1	Updated from the latest PES EIS study data

14. Availability of EWR site data or other monitoring data(RHP, DWAF gauging weirs etc) located within reach

No changes made for this sub-criterion.

15. Accessibility of resource unit for monitoring

No changes made for this sub-criterion.

16. Safety risk associated with monitoring resource units

No changes made for this sub-criterion.

9.4 APPENDIX B. GIS METADATA INCLUDING SCORES APPLIED TO SELECTED ATTRIBUTES WITHIN EACH OF THE GIS DATASETS USED TO INFORM THE PRIORITISATION PROCESS.

1.1. Ramsar sites

File description:

•	
File Name:	Olifants_Ramsar_Areas
Description:	RAMSAR sites within Olifants Catchment
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field description:

Field Name	Field description
Quaternary	Indicates the quaternary catchment the RAMSAR sites intersect
Name	Official RAMSAR wetland name
Site_Id	Official RAMSAR site ID
Score	RAMSAR importance score. Scores ranged from 0 -1
weight	RAMSAR composite weight 0.20
RAM_score	RAMSAR weighted score. Calculated by scaling RAMSAR score to between 0 – 0.20

1.2. Important bird areas

File description:

File Name:	Olifants_IBA_Areas
Description:	IBA areas within Olifants Catchment
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field description:

Field Name	Field description
IBA_SA	Official IBA SA ID code
Protection	Official IBA protection status
Name	Official IBA name
Global_Sub	Official IBA global sub ID
IBA_ZA	Official IBA ZA ID code
Quaternary	Indicates the quaternary catchment the IBA sites intersect
Score	IBA importance score. Scores ranged from 0 -1
weight	IBA composite weight 0.20
IBA_score	IBA weighted score. Calculated by scaling IBA score to between 0 - 0.20

1.3. Protected areas

File description:

File Name:	Olifants_Prot_Areas
Description:	Protected areas within Olifants Catchment
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field Name	Field description
Quaternary	Indicates the quaternary catchment the PA sites intersect
Reservenam	Official PA reserve name
Spec_type	Official PA type
Global_Sub	Official IBA global sub ID

Score	PA importance score. Scores ranged from 0 -1
weight	PA composite weight 0.60
PA_score	PA weighted score. Calculated by scaling PA score to between 0 - 0.6

1.4. Cultural services

File description:

File Name:	CS_layer
Description:	Combination of RAMSAR, IBAs and Protected areas datasests
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field description:

Field Name	Field description
RAM_score	RAMSAR weighted score. Calculated by scaling RAMSAR score to between 0-0.2
PA_score	PA weighted score. Calculated by scaling PA score to between 0 - 0.6
IBA_score (ram_score_1)	IBA weighted score. Calculated by scaling IBA score to between 0 - 0.2
CS_score	Calculated by adding Ram, PA and IBA scores. Scores range between 0 -1
CS_weight	CS composite weight 0.105
CS_I3_score	CS weighted score. Calculated by scaling CS score to between 0-0.105

1.5. Monthly income

File description:

-	
File Name:	monthly_income_dissolve_ward
Description:	STATSSA enumerated data for monthly income per ward. Monthly income categories were based on percent
	low and very low income levels. The following categories were used:
	0 - 50 % low/very low income = 0
	51 – 70 % low/very low income = 0.25
	71 – 80 % low/very low income = 0.50
	81 – 90 % low/very low income = 0.75
	91 – 100 % low/very low income = 1
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field Name	Field description
Ward	Ward Number.
no_income	# of people with no income
R1_R400	# of people earning between specified range
R401_800	# of people earning between specified range
R801_R1600	# of people earning between specified range
R1601_R3200	# of people earning between specified range
R3201_R6400	# of people earning between specified range
R6401_R12800	# of people earning between specified range
R12801_R25600	# of people earning between specified range
R25601_R51200	# of people earning between specified range
R51201_R102400	# of people earning between specified range
R102401_R204800	# of people earning between specified range
R204801_more	# of people earning between specified range
unspec	# of people with unspecified income
not_applic	# of people that are not applicable
very_low	0 < Sum of earnings <= 800
low	800 < Sum of earnings <= 6400
medium	6400 < Sum of earnings <= 25600
high	Sum of earnings > 25600
total_incom	Sum of all income earners (excl. unspec. And not applic. Classes)

per_low	Sum of low income earners per total income earners
perc_very_low	Sum of very low income earners per total income earners
Perc_low_very_low	Sum of per_low and Perc_very_low earners
Rank	Scores based on perc_low_very_low values. Scores range from 0 - 1
IM_weight	IM composite weight 0.20
IM_score	IM weighted score. Calculated by scaling IM score to between 0 - 0.20

1.6. Population density

File description:

File Name:	Pop_Density_dissolve_ward
Description	STATSSA enumerated data for population density per ward. Population density categories were based on number of people per square kilometre. The following categories were used: 0 - 200 people = 0 201 - 400 people = 0.25 401 - 600 people = 0.50 601 - 1000 people = 0.75 More than 1000 people = 1
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field description:

Field Name	Field description
WARD_ID	Ward Number.
person	# of people per ward
Sqkm	Total area of ward (square kms)
Pop_Density	# of people per sqr km
Score	Scores based on number of people per square kilometre. Scores range from 0 - 1
PD_weight	PD composite weight 0.20
PD_Score	PD weighted score. Calculated by scaling PD score to between 0 - 0.20

1.7. Unemployment

File description:

-	
File Name:	employment_status_dissolve_ward
Description:	STATSSA enumerated data for employment status per ward. Unemployment categories were based on percent of unemployed people per ward. The following categories were used: 0 - 5 % unemployed = 0 5.1 - 10 % unemployed = 0.25 10.1 - 15 % unemployed = 0.50 15.1 20 % unemployed = 0.75 More than 20 % unemployed = 1
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field description:

Field Name	Field description
WARD_ID	Ward Number.
unemploy	# of people unemployed per ward
employ	# of people employed per ward
disc_work_seek	# of discouraged work seekers per ward
not_econ_active	# of non-economic active people per ward
not_aplic	# of not applicable per ward
percen_uempl	Percentage of unemployed people per total ward (excl. not_aplic)
Score	Scores based on percentage unemployed. Scores range from 0 - 1
ES_weight	ES composite weight 0.20
ES_score	ES weighted score. Calculated by scaling ES score to between 0 - 0.20

1.8. Dwelling type

File description:

File Name:	settlement_type_dissolve_ward
Description:	STATSSA enumerated data for dwelling type per ward. Dwelling type categories were based on percent of
	summed traditional dwellings and informal settlements per ward. The following categories were used:
	0 – 5 % very low informal dwellings = 0
	5.1 – 10 % low informal dwellings = 0.25
	10.1 – 20 % moderate informal dwellings = 0.50
	20.1 – 40 % high informal dwellings = 0.75
	More than 40 % very high informal dwellings = 1
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field description:

Field Name	Field description
WARD_ID	Ward Number.
House_brick_structure	# of people living in specified dwelling type
Traditional_dwelling	# of people living in specified dwelling type
Flat	# of people living in specified dwelling type
Cluster	# of people living in specified dwelling type
Townhouse	# of people living in specified dwelling type
Semi_detached_house	# of people living in specified dwelling type
backyard_room	# of people living in specified dwelling type
Informal_dwelling_backyard	# of people living in specified dwelling type
Informal_dwellingsettlememt	# of people living in specified dwelling type
granny_flat	# of people living in specified dwelling type
Caravan	# of people living in specified dwelling type
Other	# of people living in specified dwelling type
Unspecified	# of people living in unspecified dwelling type
Not_applicable	# of people that are not applicable
Total_settle	Sum of all people in dwellings (excl. unspec. And not applic. Classes)
perc informal	Percent of summed Informal_dwellingsettlememt and Traditional_dwelling per total _settle (excl.
poro_iniorinai	unspecified and not_applic.)
Score	Scores based on Percent of summed Informal_dwelling_settlememt and Traditional_dwelling per
	total _settle. Scores range from 0 - 1
ST_weight	ST composite weight 0.20
ST_score	ST weighted score. Calculated by scaling ST score to between 0 - 0.20

1.9. WetWin climatic conditions

File description:

File Name:	wetwin_climatic_cond	
Description:	Wet-Win Quaternary datasets (OWMA_EcoServices_Updated_DM) linked to Quaternary catchment feature	
	class. Data ranked by number of months without rainfall (Provisioning tab) and reclassified as follows: 0 = 0;	
	1 = 0.25; 2 = 0.5; 3 = 0.75; 4 = 1	
Туре:	ArcMap GIS polygon feature class	
Reference System:	Transverse Mercator WGS LO31	
Captured:	Eco-Pulse Consulting Services cc	

Field description:

Field Name	Field description
Quaternary	Indicates the quaternary catchment the that relate to the WetWin climatic conditions
dry_month	# of months without rain
months	# of months in the year
Score	# of months without rain in the year, scale to 0-1
CC_weight	Climatic conditions weight: 0.2
CC_score	Climatic conditions score after 0.2 weight applied

1.10. Livelihood support services

File description:

File Name:	LS_layer
Description:	Combination of monthly income, population density, employment status, dwelling type and climatic conditions
	datasests
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field description:

Field Name	Field description
WARD_ID	Ward Number
ST_score	Dwelling type score
PD_Score	Population density score
ES_score	Employment status score
IM_score	Income level score
QUATERNARY	Indicates the quaternary catchment the that relate to the WetWin climatic conditions
CC_score	Climatic conditions score
LS_score	Sum of ST, PD, ES, IM and CC score
LS_weight	Livelihood weight: 0.258
LS L3 score	Livelihood score after weight applied

1.11. Flood attenuation

File description:

File Name:	Flood_attenuation_1
Description:	Ranked wetlands according to demand and supply influence on flood attenuation
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Mapping Resolution:	1:2 000 – 1:3 000
Captured:	Eco-Pulse Consulting Services cc

Field description:

Field Name	Field description
Quaternary	Indicates the quaternary catchment the entire or portions of the wetland(s) fall into
HGM_rank	Describes the wetland type based on the HGM model: Floodplain, Valley-bottom – channelled, Valley-bottom –
Supply_score	Allocated a supply score to all wetlands based on HGM type as follows: Floodplain = 1; Valley-bottom – channelled = 0.5; Valley-bottom – unchannelled = 0.75; Hillslope seep = 0.25; Flat = 0; Depression = 0. Rescaled the wetland type scores to 0.5
Demand_score	Used Wet-Win Quaternary datasets to create a feature class showing the relative demand for flood attenuation. Flood attenuation demand score calculated by summing relative scores per quaternary catchment for catchment slope, dams in catchment, landuse flows and rainfall intensity and rescaling to 0.5
FA_score	Flood attenuation score before level 4 weight is applied. Calculated by adding together the wetland demand and wetland supply scores for flood attenuation. Scores are between 0-1
FA_L4_weight	Level 4 weight: 0.149
FA_L4_score	Flood attenuation score after level 4 weight applied. Scores range from 0 – 0.12665

1.12. Water quality enhancement

· · · · · · · · · · · · · · · · · · ·	
File Name:	Water_quality_enhancement
Description:	Ranked wetlands according to demand and supply influence on water quality and enhancement
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field description:

Field Name	Field description
Quaternary	Indicates the quaternary catchment the entire or portions of the wetland(s) fall into.
HCM rank	Describes the wetland type based on the HGM model: Floodplain, Valley-bottom - channelled, Valley-bottom -
	unchannelled, Hillslope seep, Flat, Depression.
	Allocated a supply score to all wetlands based on the perceived capacity of different HGM types to assimilate
Supply_score	pollutants as follows: Floodplain = 0.5; Valley-bottom – channelled = 0.5; Valley-bottom – unchannelled = 1.0;
	Hillslope seep = 0.25; Flat = 0; Depression = 0. Rescaled the wetland type scores to 0.5.
	Phase 1:
	Used Wet-Win Quaternary datasets to create a feature class showing relative demand for Wet-Win water quality
	and enhancement (WQE). Demand score calculated by summing relative scores per quaternary catchment for non-
	point source pollution, mining activities and population density and rescaling to between 0 - 0.5.
	Phase 2:
Demand_score	Created a feature class reflecting PES/EIS physico-chemical impacts by extracting relevant data from the desktop
	PES/EIS datasets (Potential physic-chemical mod activities) and adjusting scores to a range from 0-1. These
	scores were then rescaled to range from 0 - 0.5.
	Phase 3:
	Added the scaled scores for the Wetwin demand and PES/EIS physico-chemical impacts. Scores ranged between
	0-1. Rescaled scores to range between 0-0.5.
WO score	WQ score before level 4 weight is applied. Calculated by adding together the wetland demand and wetland supply
Wa_score	scores for water quality enhancement. Scores are between 0-1.
WQ_L4_weight	Level 4 weight: 0.691.
WQ_L4_score	WQE score after level 4 weight applied.

1.13. Sediment & Erosion Control

File description:

File Name:	Sediment_erosion_1
Description:	Ranked wetlands according to demand and supply influence on sediment and erosion control
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field description:

Field Name	Field description
Quaternary	Indicates the quaternary catchment the entire or portions of the wetland(s) fall into.
HGM_rank	Describes the wetland type based on the HGM model: Floodplain, Valley-bottom – channelled, Valley- bottom – unchannelled, Hillslope seep, Flat, Depression
Supply_score	Allocated a supply score to all wetlands based on the perceived importance of different HGM types to trap sediments and control erosion: Floodplain = 0.75; Valley-bottom – channelled = 0.5; Valley-bottom – unchannelled = 1.0; Hillslope seep = 0.5; Flat = 0; Depression = 0. Rescaled the wetland type scores to 0.5.
Demand_score	Used Wet-Win Quaternary datasets to create a feature class showing the relative Wet-Win demand for sediment trapping and erosion control (STE). STE control Wet-Windemand score calculated by summing relative scores per quaternary catchment for sediment sources and landuse erodibility and rescaling to 0.5
SE_score	Sediment and Erosion score before level 4 weight is applied. Calculated by adding together the wetland demand and wetland supply scores for sediment and erosion. Scores are between 0-1
SE_L4_weight	Level 4 weight: 0.16
SE_L4_score	Sediment and erosion score after level 4 weight applied. New scores scaled from 0 -0.153

1.14. WetWin: Impact levels

File Name:	Impact_levels_wetwin
Description:	Impact levels determined at a quaternary catchment level through the Wet-Win project which used available data to assess the potential impact of catchment-related activities on wetland condition. Aspects considered as part of this assessment included: Hydrological threats, geomorphological threats, modifications to wetland vegetation, the PES of rivers in the quaternary catchment; and the population density as a surrogate for

	potential water quality impacts.
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field description:

Field Name	Field description
Quaternary	Indicates the quaternary catchment the that relate to the WetWin impact levels
SCORE	Phase 1: Adjusted health scores from (OWMA_WETHealth – "Health" dataset) to a score from 0-1 by adjusting existing scores (scale of 0-10). Linked "Health" Scores for each quaternary catchment to the Quaternary Catchment feature class.
	Phase 2: Summed scores (scaled to 0-0.2) for: hydro threats, geomorphic threats, vegetation modification, river
II. waisht	T Los and population density. New score(s) are scaled from 0-1
IL_weight	Impactievel weight: 0.75
IL_weighted_score	Impact level scores after 075 weights applied. New score scaled from 0 - 0.75

1.15. PES/EIS: Pressures

File description:

File Name:	PES_EIS_pressures_layer
Description:	Used the PES/EIS project data (DWA, 2012) to provide an indication of current pressures on aquatic resources. The most relevant used from a wetland perspective were: Riparian – Wetland Zone Modification; Potential Flow Modification; and Potential Physico-Chemical modifying activities. These threat scores were integrated to provide another surrogate measure of threats facing wetland ecosystems. Scores from this and the Wet-Win datasets were then integrated to provide an indication of pressures facing wetlands across the study area
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field description:

Field Name	Field description
SQ_ID	Sub-quaternary catchment ID
pot_phys_chem_score	Pot Physico-Chemical Modification rescaled to 0 - 1
RW_mod_score	Rip-Wet Modification value rescaled to 0 - 1
pot_flow_score	Pot Flow Modification rescaled to 0 - 1
PES_EIS_comb_score	Summed scores for input datasets above
PES_EIS_press_weight	PES/EIS: Pressures weight: 0.25
PES_EIS_comb_score_weighted	PES_EIS_comb_score after level 4 weight of 0.25 applied

1.16. Wetland threats

File description:

File Name:	Wetland_threats_2
Description:	Combined dataset containing WetWin impact level final scores and PES/EIS final scores
Type:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field Name	Field description
SQ4_ID	Sub-quaternary catchment ID (1)

PES_EIS_press_score	PES_EIS_comb_score after level 4 weight of 0.25 applied
IL_weighted_score	Impact level scores after 075 weights applied. New score called from 0 - 0.75
WT_score_0_1	Summed IL_weighted_score and PES_EIS_press_score sacled to scores from 0-1

1.17. Threat to users

File description:

File Name:	Wet_threat_to_user
Description:	Effectively, the wetland threats dataset exported to a threat to users dataset
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field description:

Field Name	Field description
SQ4_ID	Sub-quaternary catchment ID (1)
QUATERNARY	Indicates the quaternary catchment the that relate to the WetWin impact levels
WT_score	Summed IL_weighted_score and PES_EIS_press_score
Threat_Use_score	The same as the WT_score
Threat_Use_score_0_1	As above but adjusted to a score from 0-1.
TTU_weight	Threat to user weight: 0.333
TTU_weighted_score	Threat to user scores after 0.333 weights applied. New score scaled from 0 - 0.333

1.18. Threat to resources

File description:

File Name:	Wet_threat_to_resources
Description:	Effectively, the wetland threats dataset exported to a threat to resources dataset
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field description:

Field Name	Field description
SQ4_ID	Sub-quaternary catchment ID (1)
QUATERNARY	Indicates the quaternary catchment the that relate to the WetWin impact levels
WT_score	Summed IL_weighted_score and PES_EIS_press_score
Threat_resource_score	The same as the WT_score
Threat_ resource_score _0_1	As above but with scores normalised from 0-1.
TTR_weight	Threat to resource weight: 0.333
TTR_weighted_score	Threat to resource scores after 0.333 weights applied. New score scaled from 0 - 0.333

1.19. NFEPA

File description:

File Name:	NFEPA_all_combined_ammended
Description:	Combined selected NFEPA datasets for ecological importance and sensitivity analysis. The sum total of all
	consolidated NFEPA datasets ranked between 0 – 1.
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field Name	Field description
NWCS_L4	Original NFEPA wetland classification

	Field contains summed scores for NFEPA wetland rank and WETFEPA after respective weights
	have been applied.
	Phase 1:
	Wetland Rank (importance)
	Wetlands were ranked (1=most important to 6=least important) in terms of their importance.
	This provides a useful basis for comparing the relative importance of wetlands in contributing
	towards biodiversity objectives. We applied the following ratings based on the rank of wetlands:
Combined score rank wetfepa	1 = 1; $2 = 0.8$; $3 = 0.6$; $4 = 0.4$; $5 = 0.3$; $6=0$. Scores were then rescaled to $0 - 0.388$.
	Phase 2:
	Here, priority wetlands have been selected to meet national wetland conservation targets. We
	applied the following ratings based on WEIFEPA status: 1 = 1; Others=U. Scores were then
	rescaled to 0 - 0.243
	Phase 3
	Summed wetland rank and WETEEPA weighted scores
	Field contains summed scores for NFEPA wetland vegetation groups, wetland clusters and
	FEPA catchments after respective weights have been applied.
	Phase 1:
	Wetland clusters
	Wetland clusters are groups of wetlands within 1 km of each other and embedded in a relatively
	natural landscape. This allows for important ecological processes such as migration of frogs and
	insects between wetlands. 1. We applied the following ratings based on FEPA field: 1 = 1;
	Others=0. Scores were then rescaled to 0 - 0.067.
	Phase 2:
	Threat status of the wetland vegetation group
	The threat status of the wetland vegetation group is based on levels of transformation and
	threatened wetland group are regarded as having a greater ecological importance than those
Combined score	occurring within wetland vegetation groups of lower threat status. Apply the following ratings
-	based on the threat status of wetland vegetation groups: CR = 1; EN = 0.5; VU = 0.25; NT = 0.
	Scores were then rescaled to 0 - 0.228.
	Phase 3:
	FEPA catchment
	FEPAs support the biodiversity sector's input into the development of Catchment Management
	Strategies and into the Water Resource Classification process5. This database including
	FEPAs, RehabFEPAs, Fish Support Areas and Upstream management areas therefore
	highlights catchments where water resource management (including wetland management) is
	important to meet biodiversity targets. We applied the following ratings based on the FEPA
	Code: $1 = 1$; $2 = 0.75$; $3 = 0.5$; $4 = 0.25$; Others=0. Scores were then rescaled to $0 - 0.074$
	Phase 4:
	Summed wetland vegetation group, wetland cluster and FEPA catchment weighted scores with
	Combined_score_rank_wetfepa score.
Nfepa_wght	NFEPA weight: 0.536
NFEPA_wght_score	NFEPA scores after 0.536 weight applied. New scores scaled from 0 - 0.4944

1.20. PES/EIS: riparian-wetland instream vertebrates (ex fish) rating

File Name:	Instream_invert
Description:	The importance of threatened taxa was assessed by experts for river reaches at a desktop level as part of the desktop PES/EIS assessment (DWA, 2012). This provided another level of information on ecological importance that was integrated into this assessment. We applied the following ratings based on the "Ecological Importance: Riparian-Wetland-instream vertebrates (Ex fish) rating": Very High = 1; Moderate = 0.5; Low = 0.25; None=0.
Туре:	ArcMap GIS polygon feature class

Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field description:

Field Name	Field description
SQ_ID	Sub-quaternary catchment ID (1)
SQ_Name	Official SQ name
Metric_four	PES/EIS: Riparian-Wetland Instream vertebrates (ex fish) rating
Met4_scale	Metric four rank scaled to 0 - 1
Scaled_ranked	Metric four weight: 0.058
ISIV_score	PES/EIS: Riparian-Wetland Instream vertebrates (ex fish) scores after 0.058 weights applied. New
	score scaled from 0 - 0.058

1.21. PES/EIS: riparian-wetland vegetation importance

File description:

•	
File Name:	wetland_veg_importance
Description:	Effectively, the wetland threats dataset exported to a threat to resources dataset
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field description:

Field Name	Field description
SQ_ID	Sub-quaternary catchment ID (1)
SQ_Name	Official SQ name
Metric_eight	PES/EIS: Riparian-Wetland vegetation Importance
Met8_scaled_score	Metric eight rank scaled to 0 - 1
weight	Metric four weight: 0.073
RWVI_score	PES/EIS: Riparian-Wetland vegetation Importance scores after 0.073 weights applied. New score scaled from 0 - 0.073

1.22. PES

File description:

File Name:	PES_ammen
Description:	Resource Units with an A/B PES or an agreed A/B NEC (in the case where Water Resource Classification
	has been undertaken) need to be carefully managed to prevent deterioration of these reaches. This is
	particularly relevant given the poor state of South Africa's rivers and the need to protect aquatic
	biodiversity. PES was based on information available in the Wetland FEPA feature class and that provided
	in the Exigent dataset. We applied the following ratings based on wetland condition:
	NFEPA Data: AB = 1; C = 0.5; Other classes = 0
	Exigent Data (Status): 5=1; 4=0.75; 3=0.5; 2=0.25, 1=0
	Where Exigent information was available, this was used to determine the combined PES score. Where
	such information was lacking, scores were allocated based on the NFEPA dataset.
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field Name	Field description
NWCS_L4	Original NFEPA wetland classification
WETCON	Original wetland condition (NFEPA Data)
STATUS	Original wetland status (Exigent Data)
Nfepa_score	NFEPA score based on wetland condition. Scale to 0 - 1
exigent_score	Exigent score based on wetland condition. Scaled to 0 – 1
combined score	PES condition score based on Exigent data where available. Where not available, the NFEPA data
combined_score	was used.
PES_weight	PES weight:0.13
PES_score	Summed NFEPA and Exigent ranks scaled to PES weight: new scores scale from 0 – 0.13

1.23. Sensitivity: high flows

File description:

File Name:	wetland_sens_floods
Description:	We scored wetlands based on their sensitivity to floods. Floodplains are regarded as most sensitive, followed by valley bottoms, seeps and pans. We applied the following ratings based on wetland type: Floodplain = 1; Valley-bottom – channelled = 0.75; Valley-bottom – unchannelled = 0.5; Hillslope seep = 0; Depression = 0
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field description:

Field Name	Field description
HGM_rank	Describes the wetland type based on the HGM model: Floodplain, Valley-bottom - channelled,
	Valley-bottom – unchannelled, Hillslope seep, Flat, Depression
wet_score	Score given based on wetland type and sensitivity to flooding
Weight	High flow weight: 0.25
SHF_score	Wetland sensitivity to floods scores after 0.25 weight applied. New scores scaled from 0 - 0.25

1.24. Sensitivity: low flows

File description:

File Name:	wetland_sens_lowflow
Description:	We scored wetlands based on their sensitivity to low flows. Unchannelled valley bottom wetlands are regarded as most sensitive, followed by seeps and other wetland types. We applied the following ratings based on wetland type: Floodplain = 0.5; Valley-bottom – channelled = 0.5; Valley-bottom – unchannelled = 1; Hillslope seep = 0.75; Depression = 0.5
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field description:

Field Name	Field description
HGM_rank	Describes the wetland type based on the HGM model: Floodplain, Valley-bottom - channelled,
	Valley-bottom – unchannelled, Hillslope seep, Flat, Depression
wet_score	Score given based on wetland type and sensitivity to low flows
Weight	Low flow weight: 0.25
SLF_score	Wetland sensitivity to low flows scores after 0.25 weight applied. New scores scaled from 0 - 0.25

1.25. PES/EIS: Sensitivity (Intolerance to water level / flow changes)

File Name:	PES_EIS_sensitivity
Description:	Vertebrate taxon (excluding fish) and vegetation that are sensitive / intolerant to water level changes were assessed at a desktop level as part of the desktop PES/EIS process (DWA, 2012). Phase 1 We applied the following ratings based on the "Riparian-wetland-instream vertebrates (Ex fish) intolerance water level / flow changes description) rating": Very High = 1; Moderate = 0.5; Low = 0.25; None=0.
	Phase 2 We also applied the following ratings based on the "Riparian-wetland veg intolerance water level changes description) rating": Very High = 1; Moderate = 0.5; Low = 0.25; None=0.
	Phase 3
	Both scored datasets were then scale to 0-0.5 by using a weight factor of 0.5. these scores were then summed to form the PES/EIS sensitivity scores and then scaled to 0-0.5 using a 0.5 weight factor
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31

Captured:	Eco-Pulse Consulting Services cc

Field description:

Field Name	Field description
SQ_NAME	Official SQ name
SQ_ID	Sub-quaternary catchment ID (1)
PES_EIS_sens_score	Scored and weighted PES/EIS: Riparian-Wetland Instream vertebrates (ex fish) intolerance water
	level / flow changes description and PES/EIS: Riparian-Wetland Vegetation intolerance to water level
	changes. Scoles scaled to 0 – 0.5

1.26. Sensitivity

File description:

File Name:	Sensitivity
Description:	Combined: Sensitivity: High Flows, Sensitivity: Low flows and PES/EIS: Sensitivity datasets
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field description:

Field Name	Field description
SQ_ID	Sub-quaternary catchment ID (1)
SQ_NAME_1	Official SQ name
PES_EIS_sens_score	Scored and weighted PES/EIS: Riparian-Wetland Instream vertebrates (ex fish) intolerance water level / flow changes description and PES/EIS: Riparian-Wetland Vegetation intolerance to water level changes. Scores scaled to $0 - 0.5$
HGM_rank	Describes the wetland type based on the HGM model: Floodplain, Valley-bottom – channelled, Valley-bottom – unchannelled, Hillslope seep, Flat, Depression
Wet_flow_combined_score	Combined SLF_score and SHF_score. Scores scale to 0 - 0.5
SENS_Score	Summed PES_EIS_sens_score and Wet_flow_combined_score
SENS_weight	Sensitivity weight: 0.25
SENS_L4_score	Sensitivity score after weight applied. New score are between 0 – 0.25

1.27. Ecological importance

File description:

File Name:	Ecological_importance_ammended
Description:	Combined: protected areas, Ramsar sites, NfEPA, PES/EIS: Riparian-Wetland Instream vertebrates (ex
	fish), PES/EIS: Riparian-Wetland vegetation Importance and PES datasets
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field description:

Field Name	Field description
Comb_PA_RAM_score	Combined protected areas and RMSAR scores
QUATERNARY	Quaternary catchment ID
SQ_NAME	Official SQ name
PES_NFEPA_score	Combined PES and NFEPA scores
El_score	Combined comb_wetfepa_PES_score and pa_ram_wetveg_inv_comb_score
El_weight	Ecological importance weight: 0.75
El_weightscore	Ecological importance after weight applied. New scores are between 0 -0.658

1.28. Regulating and supporting services

File Name:	Reg_Support_services_ammended
Description:	Combined: flood attenuation, sediment and erosion control and water quality enhancement datasets
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31

Captured:	Eco-Pulse Consulting Services cc

Field description:

Field Name	Field description
HGM rank	Describes the wetland type based on the HGM model: Floodplain, Valley-bottom - channelled,
	Valley-bottom – unchannelled, Hillslope seep, Flat, Depression
SQ_ID	Sub-quaternary catchment ID (1)
QUATERNARY	Quaternary catchment ID
WQ_L4_score	Water quality score
FA_L4_score	Flood attenuation score
SE_L4_score	Sediment and erosion score
RS_Serv_score	Summed WQ, FA and SE scores. Scores range between 0 - 1
RS_Serv_weight	Regulating service weight: 0.637
RS_Sev_L3_score	Regulating service score after weight applied. New scores are between 0 – 0.565

1.29. Importance for users

File description:

File Name:	Importance_for_users_ammended
Description:	Combined: cultural services, livelihood and regulating and supporting services datasets
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field description:

Field Name	Field description
HGM rank	Describes the wetland type based on the HGM model: Floodplain, Valley-bottom - channelled,
	Valley-bottom – unchannelled, Hillslope seep, Flat, Depression
SQ_ID	Sub-quaternary catchment ID (1)
QUATERNARY	Quaternary catchment ID
RS_Sev_L3_score	Regulating services score
CS_L3_score	Cultural services score
LS_L3_score	Livelihood support score
IFU_score	Summed RS,CS and LS scores. Scores range between 0 – 0.676
IFU_Score_0_1	IFU Score normalised to a score between 0 & 1.
IFU_weight	Importance for users weight: 0.667
IFIL weighted score	Importance for users score after applying weighting to normalised IFU Score. New scores are
n o_weighted_score	between 0 – 0.667

1.30. EIS

File description:

-	
File Name:	EIS_ammended
Description:	Combined: ecological importance and sensitivity datasets
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field Name	Field description
HGM rank	Describes the wetland type based on the HGM model: Floodplain, Valley-bottom - channelled,
	Valley-bottom – unchannelled, Hillslope seep, Flat, Depression
SQ_ID	Sub-quaternary catchment ID (1)
SENS_L4_score	Sensitivity score
El_weightscore	Ecological importance score
EIS_score	Summed SENS and EL scores. Scores range between 0 - 1
EIS_score_0_1	As above but with scores normalised from 0-1.
EIS_weight	EIS weight: 0.667
EIS_weighted_score	EIS score after weight applied. New scores are between 0 – 0.667

1.31. User concerns

File description:

i ne accomption	
File Name:	User Concern_ammended
Description:	Combined: importance for users and threats to users dataset
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field description:

Field Name	Field description
HGM_rank	Describes the wetland type based on the HGM model: Floodplain, Valley-bottom – channelled, Valley-bottom
	– unchannelled, Hillslope seep, Flat, Depression
SQ_ID	Sub-quaternary catchment ID (1)
TTU_weighted_score	Threat to user scores after 0.333 weights applied. New score scaled from 0 - 0.0.257
IFU_weighted_score	Importance for users score after 0.667 weights applied. New score scaled from 0 - 0.0.488
UC_score	User concern score calculated by summing above two scores
UC_0_1	User concerns scores normalised to between 0 and 1.

1.32. Environmental concerns

File description:

File Name:	Environmental Concern_ammended
Description:	Combined: threat to resources and EIS
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field description:

Field Name	Field description
HGM rank	Describes the wetland type based on the HGM model: Floodplain, Valley-bottom - channelled,
IIOm_Iank	Valley-bottom – unchannelled, Hillslope seep, Flat, Depression
SQ_ID	Sub-quaternary catchment ID (1)
TTR_weighted_score	Threat to resources score
EIS_weighted_score	Ecological Importance & Sensitivity Score
EC_score	Environmental concern score calculated by summing above two scores
EC_0_1	Environmental concerns scores normalised to between 0 and 1.

1 33. Monitoring data (Practical Considerations)

File description:

File Name:	Monitor_sites
Description:	We selected wetlands based on (i) WFWetlands intervention point dataset; (ii) DWS monitoring sites & (iii)
	EWR sites. We then applied the following ratings for wetlands based on intersection with various datasets:
	Yes = 1; No = 0
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field Name	Field description
HGM rank	Describes the wetland type based on the HGM model: Floodplain, Valley-bottom - channelled,
riom_runk	Valley-bottom – unchannelled, Hillslope seep, Flat, Depression
WFW_score	Score of 1 if wetland is within 60 m of WfW monitor site. Scores were then scale to 0 -0.6
EWR_score	Score of 1 if wetland is within 60 m of EWR monitor site. Scores were then scale to 0 -0.2
DWA_score	Score of 1 if wetland is within 60 m of DWA monitor site. Scores were then scale to 0 -0.2
MON_score	Summed WFW, EWR and DWA scores
MON_weight	Management and practical consideration weight applied: 0.25
MON_weighted_score	monitoring score after weight applied. New scores are between 0 – 0.25

1 34. IUA position File description:

File Name:	IUA_wetlands
Description:	We select any large wetlands along mainstream rivers closest to the IUA outlet and created a separate GIS
	feature class. We then allocated a score between 0-1 for each of these wetlands
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field description:

Field Name	Field description										
HGM rank	Describes the wetland type based on the HGM model: Floodplain, Valley-bottom - channelled,										
	Valley-bottom – unchannelled, Hillslope seep, Flat, Depression										
IUA_Scores	Score of either 0, 5, 0.75 or 1 given if wetland was along major rivers leaving the IUA										
IUA_weight	IUA weight applied: 0.25										
IUA_weighted_score	IUA score after weight applied. New scores are between 0 – 0.25										

1 35. Wetland Type

File description:

File Name:	Wetland_delineation
Description:	Combined NFEPA and Exigent wetlands. Where exigent wetlands were present NFEPA wetlands were removed. All artificial wetlands were also removed. We allocate a generalized supply score to all wetlands based on HGM type as follows: Floodplain = 1; Valley-bottom – channelled = 0.25; Valley-bottom – unchannelled = 0.5; Hillslope seep = 0.25; Flat = 0; Depression = 0
Туре:	ArcMap GIS polygon feature class
Reference System:	Transverse Mercator WGS LO31
Captured:	Eco-Pulse Consulting Services cc

Field Name	Field description										
NWCS_L4	Original NFEPA wetland classification										
EX_type	Exigent wetland type										
HGM_rank	Describes the wetland type based on the HGM model: Floodplain, Valley-bottom – channelled, Valley- bottom – unchannelled, Hillslope seep, Flat, Depression										
HGM_score	Scores given to wetlands										
HGM_weight	HGM supply weight applied. 0.5										
HGM_weighted_score	HGM score after weight applied. New scores are between 0 – 0.5										

9.5 APPENDIX C: LIST OF PRIMARY SPATIAL (GIS) INFORMATION USED TO INFORM THE WETLAND PRIORITISATION PROCESS FOR THE OLIFANTS CATCHMENT

Name of Layer	Source/Copyright holder	Report Reference
IBA coverage 2012	Birdlife South Africa (on-line at www.birdlife.org)	BirdLife SA (2012)
Ramsar Sites	Department of Environmental Affairs	DEA (2012)
Formally protected areas	South African National Biodiversity Institute	SANBI (2013)
Statistics South Africa Census Data	Statistics South Africa Census Data	STATSSA (2013)
WetWin Datasets ⁶	WetWin Project. International Water Management Institute	IWMI (2011)
Wetland Type	NFEPA Wetlands layer (See below) and Exigent Engineering Consultants.	CSIR (2010a); Exigent (2006)
PES/EIS Assessment	DWA	DWA, 2013
NFEPA Wetlands layer	National Freshwater Ecosystem Priority Areas Project. Centre for Scientific Research. Pretoria, South Africa.	CSIR (2010a)
NFEPA Wetland Clusters	National Freshwater Ecosystem Priority Areas Project. Centre for Scientific Research. Pretoria, South Africa.	CSIR (2010b)
NFEPA Rivers layer	National Freshwater Ecosystem Priority Areas Project. Centre for Scientific Research. Pretoria, South Africa.	CSIR (2010c)
NFEPA River FEPAs	National Freshwater Ecosystem Priority Areas Project. Centre for Scientific Research. Pretoria, South Africa.	CSIR (2010d)
NFEPA Wetland Vegetation Groups	National Freshwater Ecosystem Priority Areas Project. Centre for Scientific Research. Pretoria, South Africa.	CSIR (2010e)

⁶ Includes a range of data captured at a quaternary catchment level and eextracted from the PES & EcoServices spreadsheets for the Olifants catchment.

9.6 APPENDIX D. CRITERIA AND ASSOCIATED WEIGHTINGS USED IN PRIORITIZING WETLANDS FOR RQO DETERMINATION. INITIAL GIS DATASETS ARE SHADED IN GREY.

Level 1	Weight	Level 2	Weight	Level 3	Weight	Level 4	Weight	Level 5	Weight	Level 6	Weight	Level 7	Weight	Level 8
	N/A	IUA Position	1	Position in IUA										
					0.105	Cultural Services	0.2 0.2 0.6	Ramsar sites IBAs Protected areas						
							0.2 0.2	Income levels Population density						
		Users - Concer n			0.258	Livelihood support	0.2	Unemploymen t (%) Dwelling type						
Wetlan			- r 0.667				0.2	Wet-Win: Climatic conditions						
					N/A	Strategic requireme nts	N/A							
d	N/A			Importanc	0.627		0.149		0.5	Supply	1	Wetland Type		
Fliolity				users		Regulating		Flood attenuation	0.5 Demand				0.25	Catchment Slope
										1	WetWin:	0.25	Dams in catchment	
										Bomana		Demand	0.25	Landuse – flows
													0.25	Rainfall intensity
					0.007	supporting services			0.5	Supply	1	Wetland Type		
							0.16	Sediment & erosion control	0.5	5 Domond	1	WetWin:	0.5	Sediment sources
									0.0	Demand		Demand	0.5	Landuse - erodibility
							0 691	Water Quality	0.5	Supply	1	Wetland Type		
							0.001	enhancement	0.5	Demand	0.5	WetWin: Demand	0.333	Non-point pollution

Level 1	Weight	Level 2	Weight	Level 3	Weight	Level 4	Weight	Level 5	Weight	Level 6	Weight	Level 7	Weight	Level 8
													0.333	Mining activities
													0.333	Population density
												PES/EIS:		
											0.5	Physico-		
						Economic						Chemical		
						contributio n	N/A							
									0.2	Hydro Threats				
									0.2	Geomorph ic Threats				
			0.333	Threat to users	1	- Wetland threats	0.75	WetWin: Impact Levels	0.2	Vegetation Modificstio				
									0.2	River PES				
									0.2	Population Density				
			0.333	Threat to resources	1		0.25	PES/EIS: Pressures	0.311	Rip-Wet Modificatio				
		Environ								n Bot Flow				
									0.493	Modificatio				
										n				
										Pot				
									0 196	Physico- Chemical				
									0.190	Modificatio				
										n				
	N/A	ment - Concer					0.128	Protected areas						
		n					0.075	Ramsar sites						
									0.228	Wetland				
						Ecological			0.220	Groups				
			0.667	EIS	0.75	Importanc				Rank				
						е	0.536	NFEPA	0.388	(Importanc				
									0 243	e) WETEEDA				
									0.240	Wetland				
									0.067	Clusters				
									0.074	FEPA				

Level 1	Weight	Level 2	Weight	Level 3	Weight	Level 4	Weight	Level 5	Weight	Level 6	Weight	Level 7	Weight	Level 8
										Catchment			· · · · ·	
							0.058	PES/EIS: Riparian- Wetland Instream vertebrates (ex fish) rating		5				
							0.073	PES/EIS: Riparian- Wetland vegetation Importance						
							0.13	PES						
							0.25	Sensitivity: High Flows	1	Wetland Type				
					0.25	Sensitivity	0.25	Sensitivity: Low flows	1	Wetland Type				
							0.5	PES/EIS: Sensitivity	0.5	PES/EIS: Riparian- Wetland Instream vertebrate s (ex fish) intoleranc e water level / flow changes description				
									0.5	PES/EIS: Riparian- Wetland Vegetation intoleranc e to water level changes				
	Not	Manage ment &			0.6	WFWetlan d Sites								
	consider ed	ed practica	actica I Diside	Monitorin g data	0.2	DWA Monitoring Sites								
		rations			0.2	EWR Sites								
Data Interpretation with Piper and Durov Diagrams

Many facilities for the interpretation of water quality monitoring data exist. Some of these are well-known methodologies, such as statistical evaluations, line and bar charts, or plots of borehole and water-level information. Other methodologies are less known. These are, for instance, the so-called specialized chemical diagrams. Of these, only the Piper and Expanded Durov Diagrams will be discussed.

Piper and Expanded Durov Diagrams

The Piper and Expanded Durov Diagrams allow the plotting of eight chemical parameters for a single water sample. Either surface or groundwater chemistries may be plotted.

The procedure is as follows:

- Calculate concentrations for Ca, Mg, Na, K, Cl, SO₄, NO₃, T. Alk. in units of milli-equivalents per litre.
- Calculate relative percentages for the cations and anions.
- Plot the percentages cations in the bottom left triangle.
- Plot the percentages anions in the bottom right triangle.
- Project the two points to the central block on the Piper or Durov Diagrams and make a mark where the two projections cross.

Interpretation is as follows:

- It is a matter of personal preference whether the Piper or Durov Diagrams are used.
- Both diagrams should primarily be used as visual displays, summarizing the chemistry of all samples taken at a site, or at many sites.
- Of particular value is the identification of pollution trends, through the aid of these diagrams. A comparison between plots of successive sampling exercises, will clearly

show whether or not trends in the chemistry of the water are developing. Trends to observe are:

1) Sodium enrichment - typical of processes such as waste water discharge, chemical extraction of minerals from ore, dewatering of deep mines, return flow from irrigation or natural deterioration of the ground-water quality by ion exchange within the aquifer.

2) Sulphate enrichment - typical of most mining environments.

3) Calcium enrichment - typical of lime dosing to neutralize acid water.

4) Chloride enrichment - typical of leachate from domestic waste and dewatering of deep mines.

A word of caution though: the ground-water chemistry is one of the most complex natural systems to predict, because of the many natural processes/parameters that could affect it. The following are but a few examples of chemical changes which could occur within an aquifer:

- Dissolution of soluble elements, such as Na, K, Cl and HCO3.
- Precipitation of oversaturated species.
- Ion exchange and adsorption onto clays, such as Ca-adsorption and Na-release.
- Chemical reaction between two waters mixing.
- Natural decay of substances, such as modern pesticides.
- Bacterial oxidation/reduction, such as pyrite oxidation and sulphate reduction.
- Dispersion of pollutants through the aquifer.
- Convection during flow of pollutants through the aquifer.
- The aquifer hydraulic constants, such as transmissivity, storativity, gradients and boundary conditions.

The specialized diagrams and other techniques for the interpretation of the data, included within WasteBase and WasteManager, should therefore be used with circumspection. The identification of trends should be done by all waste disposal managers. However, if undesirable pollution trends develop, which cannot obviously be linked to operations, it should best be left to the geohydrologist to suggest remedial action. The chemical composition of ground water reflects the processes which are responsible for the different constituents it contains: Wind blowing over the occan carries mainly sodium chloride landwards. Oxygen, nitrogen and carbon dioxide dissolve when the humidity in the air condenses. Additional carbon dioxide and humic acids dissolve when water percolates through the soil containing organic matter.

The ground water changes its composition as the water moves through the aquifer. Minerals dissolve and release salts; sulphides may oxidize; cations are exchanged; sulphides and nitrates can be reduced through bacterial action; evaporation leads to concentration; and once the solubility products are exceeded minerals are precipitated. Mixing with water of different origin also influences the composition.

Trilinear diagrams are used for the investigation of ions or groups of ions as a function of the concentration. On these diagrams the milli-equivalent percentages of the major cations and anions are plotted; and it has been found that the point at which an analysis plots is of considerable diagnostical value.

The Piper diagram is a combination of two trilinear diagrams and a central diamond field. In the diamond field the cations Ca^{2+} , Mg^{2+} , $Na^+ + K^+$; and the anions SO_4^{2-} , Cl^- and $HCO_3^- + CO_2^{-2-}$ are represented by a point, in the trilinear diagrams cat- and anions each separately.

To convert the units mg/L normally given in an analysis to milliequivalents the determined quantities must be divided by the molecular weight of the respective ion and its valence. The constants for the conversion of the different ions are:

Cations		Anions	
Ca	1/20	HCO ₃	1/61
Mg	1/12	CO ₃	1/30
Na	1/23	Cl	1/35.5
K	1/39	NO ₃	1/62
		SO_4	1/48

The percentage milli-eqivalents for the different cations are calculated by dividing the respective milli-equivalent values by the sum of the milli-equivalents of the cations. The percentage milli-equivalents for the anions are calculated accordingly.

After the cat- and anions are plottes in the trilinear fields their position is projected in the central diamond field. Based on the position in the diamond field ground water can be divided into four categories, nl.:

- Recently recharged ground water rich in calcium and/or magnesium and bicarbonate.
- A dynamic regime with water rich in bicarbonate with increasing sodium (and potassium) concentrations.
- "Stagnant" or relatively old ground water at the end of the cycle with high sodium, chloride and/or sulphate values. It plots near the point for see water.
- Calcium sulfate water as well as other relatively seldom encountered water which plots in the upper half of the diamond field.

Field 1: Fresh, very clean recently recharged groundwater with HCO₃₋ and CO₃ dominated ions.

Field 2: Field 2 represents fresh, clean, relatively young groundwater that has started to undergo Mg ion exchange, often found in dolomitic terrain.

<u>Field 3</u>: This field indicates fresh, clean, relatively young groundwater that has undergone Na ion exchange (sometimes in Na-rich granites or other felsic rocks), or because of contamination effects from a source rich in Na.

<u>Field 4</u>: Fresh, recently recharged groundwater with HCO_{3-} and CO_3 dominated ions that has been in contact with a source of SO₄ contamination, or that has moved through SO₄ enriched bedrock.

<u>Field 5</u>: Groundwater that is usually a mix of different types – either clean water from Fields 1 and 2 that has undergone SO_4 and NaCl mixing / contamination, or old stagnant NaCl dominated water that has mixed with clean water.

<u>Field 6</u>: Groundwater from Field 5 that has been in contact with a source rich in Na, or old stagnant NaCl dominated water that resides in Na-rich host rock / material.

Field 7: Water rarely plots in this field that indicates NO₃ or Cl enrichment, or dissolution.

<u>Field 8</u>: Groundwater that is usually a mix of different types - either clean water from Fields 1 and 2 that has undergone SO_4 , but especially CI mixing / contamination, or old stagnant NaCI dominated water that has mixed with water richer in Mg.

<u>Field 9</u>: Very old, stagnant water that has reached the end of the geohydrological cycle (deserts, salty pans, etc.); or water that has moved a long time and / or distance through the aquifer and has undergone significant ion exchange.

9.8 APPENDIX F: WORKSHOP EVALUATION QUESTIONNAIRE

water affairs

Department: Water Affairs **REPUBLIC OF SOUTH AFRICA**

RESOURCE QUALITY OBJECTIVE DETERMINATION STUDY FOR THE OLIFANTS WMA - RESOUCE UNIT PRIORITISATION WORKSHOP (29 – 31 JULY 2013)

WORKSHOP EVALUATION

NAME:				
1. Do you feel that the workshop achieved the stated objectives?	Yes	Partially	No	
Comments:				
2. Were you able to contribute meaningfully?	Yes	Partially	No	
Comments:				
3. Were you provided with sufficient information?	Yes	Partially	No	
Comments:				
4. Were you provided with sufficient time to contribute to the process?	Yes	Partially	No	
Comments:				
5. Was the workshop facilitation adequate?	Yes	Partially	No	
Comments:		•		
6. Was the length of the workshop adequate?	Too long	Adequate	Too short	
Comments:				
Additional comments/recommendations:				